JENIS IKAN LELE
Setidaknya terdapat enam jenis keluarga ikan berkumis ini, sebagian spesies pribumi dan sebagian lagi spesies asing, yang dapat dikembangkan di Indonesia.
1. Clarias batrachus dikenal sebagai ikan lele (Jawa),
• ikan kalang (Sumatera Barat),
• ikan maut (Sumatera Utara), dan
• ikan pintet (Kalimantan Selatan).
2. Clarias teysmani dikenal sebagai lele kembang (Jawa Barat),
• kalang putih (Padang).
3. Clarias melanoderma dikenal sebagai ikan duri (Sumatera Selatan),
• wais (Jawa Tengah),
• wiru (Jawa Barat).
4. Clarias nieuhofi dikenal sebagai ikan lindi (Jawa),
• limbat (Sumatera Barat),
• kaleh (Kalimantan Selatan).
5. Clarias loiacanthus dikenal sebagai ikan keli (Sumatera Barat),
• ikan penang (Kalimantan Timur).
6. Clarias gariepinus, yang dikenal sebagai lele dumbo atau King Cat Fish, spesies asing yang berasal Afrika.
PEMIJAHAN
Memijahkan ikan lele/mengawinkan lele tidak sulit. Berikut ini syarat indukan dan perawatan indukan lele agar mau berpijah dan penanganan anakan lele.
-Bentuk dan ukuran kolam bervariasi tergantung selera pemilik dan lokasinya. Perlu diingat ukuran kolam jangan terlalu besar sehingga menyulitkan pemeliharaan kolam.
-Bagian dasar dan dinding kolam sebaiknya dibuat permanen
-Pada awal pemeliharaan, minggu ke-1 sampai minggu ke-6 atau pada saat umur anak lele 7-9 minggu, air kolam harus jernih.
-Pada minggu ke-10, kekeruhan air kolam dalam batas-batas tertentu masih diperbolehkan. Kekeruhan menunjukkan kadar bahan padat yang melayang dalam air
Syarat indukan jantan:
-Kepala indukan jantan lebih kecil dari indukan ikan lele betina.
-Warna kulit dada indukan jantan agak tua bila dibanding indukan betina.
-Kelamin jantan menonjol, memanjang ke arah belakang, terletak di belakang anus, dan warna kemerahan.
-Gerakan indukan jantan lincah, tulang kepala pendek dan agak gepeng
-Perut indukan jantan lebih langsing dan kenyal bila dibanding indukan ikan lele betina.
-Bila diurut dari bagian perut ke arah ekor indukan lele jantan akan mengeluarkan cairan putih kental (spermatozoa+mani).
-Kulit jantan lebih halus dibanding betina.
Syarat indukan betina
-Kepalanya lebih besar dibanding induk lele jantan.
-Warna kulit dada agak terang.
-Kelamin berbentuk oval atau bulat daun, berwarna kemerahan, lubangnya agak lebar, letaknya di belakang anus.
-Gerakannya lambat, tulang kepala pendek dan agak cembung.
-Perutnya lebih gembung dan lunak.
-Bila diurut dari bagian perut ke arah ekor indukan betina akan mengeluarkan cairan kekuning-kuningan (ovum/telur).
Syarat umum indukan lele yang baik
-Kulitnya lebih kasar dibanding induk lele jantan.
-Induk lele diambil dari lele yang dipelihara dalam kolam sejak kecil supaya terbiasa hidup di kolam.
-Beratnya berkisar antara 100-200 gram dan panjang 20-50 cm, tergantung tingkat kesuburan badan
-Bentuk badan simetris, tidak bengkok, tidak cacat, tidak luka, dan gerakannya lincah.
-Umur indukan jantan di atas tujuh bulan, sedangkan induk betina satu tahun.
-Frekuensi pemijahan bisa satu bulan sekali, dan sepanjang hidupnya bisa memijah lebih dari 15 kali dengan syarat makanannya harus mengandung cukup protein.
-Indukan lele siap memijah jika mulai berpasang-pasangan dan berkejar-kejaran. Segera tangkap indukan tersebut dan tempatkan dalam kolam tersendiri untuk dipijahkan.
Perawatan indukan dan anakan lele:
-Selama masa pemijahan dan masa perawatan, indukan lele diberi makanan yang berkadar protein tinggi seperti cincangan daging bekicot, larva lalat (belatung), rayap atau makanan buatan (pelet). Indukan yang memijah membutuhkan pelet dengan kadar protein yang relatif tinggi yaitu kurang lebih 60%. Cacing sutra kurang baik untuk makanan indukan lele karena kandungan lemaknya tinggi. Hentikan pemberian cacing sutra seminggu menjelang perkawinan atau pemijahan.
-Makanan diberikan pagi hari dan sore hari dengan jumlah 5-10% dari berat total ikan.
-Setelah anakan atau benih berumur seminggu, indukan betina dipisahkan. Biarkan indukan jantan menjaga anak-anaknya. Indukan jantan baru bisa dipindahkan apabila anak-anak lele sudah berumur dua minggu.
-Pisahkan indukan yang mulai lemah atau yang terserang penyakit untuk segera diobati.
-Atur aliran air bersih yang masuk 5-6 liter/menit.
PEMBUDIDAYAAN
Membudidayakan ikan lele terbilang sangat mudah dan murah jika melihat syarat hidupnya. Berikut ini adalah syarat hidup ikan lele di kolam dan keramba.
Syarat hidup di kolam
1. Tanah yang baik untuk kolam pemeliharaan adalah jenis tanah liat/lempung, berlumpur, subur, dan tidak porous (melalukan air). 2. Lahan ideal untuk budi daya lele adalah sawah, kecomberan, kolam pekarangan, kolam kebun, dan blumbang.
3. Ikan lele hidup dengan baik di daerah dataran rendah sampai daerah yang tingginya maksimal 700 m dpl.
4. Ketinggian tanah dari permukaan sumber air dan kolam adalah 5-10%.
5. Lokasi untuk pembuatan kolam harus berhubungan langsung atau dekat dengan sumber air dan tidak dekat dengan jalan raya.
6. Lokasi kolam hendaknya di tempat yang teduh tetapi tidak berada di bawah pohon yang daunnya mudah rontok.
7. Pertumbuhan lele optimal pada suhu 20°C atau antara 25-28°C. Anak lele tumbuh baik pada kisaran suhu antara 26-30°C dan suhu ideal untuk pemijahan 24-28°C.
8. Lele dapat hidup dalam perairan agak tenang dan kedalamannya cukup, sekalipun kondisi airnya jelek, keruh, kotor dan miskin oksigen.
9. Perairan tidak boleh tercemar oleh bahan kimia, limbah industri, merkuri, atau mengandung kadar minyak atau bahan yang dapat mematikan ikan.
10. Perairan ideal untuk lele adalah yang banyak mengandung nutrien dan bahan makanan alami, dan bukan perairan yang rawan banjir.
11. Permukaan perairan tidak boleh tertutup rapat oleh sampah atau daun-daunan hidup, seperti enceng gondok.
Syarat hidup di keramba adalah
1. Sungai atau saluran irigasi yang tidak curam, mudah dikunjungi/dikontrol.
2. Dekat dengan rumah pemeliharanya.
3. Lebar sungai atau saluran irigasi antara 3-5 meter.
4. Sungai atau saluran irigasi tidak berbatu-batu, sehingga keramba mudah dipasang.
5. Kedalaman air 30-60 cm.
Kolam untuk pendederan
1. Bentuk kolam pada minggu 1-2, lebar 50 cm, panjang 200 cm, dan tinggi 50 cm. Dinding kolam dibuat tegak lurus, halus, dan licin, sehingga apabila bergesekan tubuh benih lele tidak akan terluka. Permukaan lantai agak miring menuju pembuangan air. Kemiringan dibuat beda 3 cm di antara kedua ujung lantai, dekat tempat pemasukan air lebih tinggi. Di lantai dipasang paralon dengan diameter 3-5 cm dan panjang 10 m.
2. Kira-kira 10 cm dari pengeluaran air dipasang saringan yang dijepit dengan dua bingkai kayu tepat dengan permukaan dalam dinding kolam. Di antara dua bingkai dipasang selembar kasa nyamuk dari bahan plastik berukuran mess 0,5-0,7 mm, kemudian dipaku.
3. Setiap kolam pendederan dipasang pipa pemasukan dan pipa air untuk mengeringkan kolam. Pipa pengeluaran dihubungkan dengan pipa plastik yang berfungsi untuk mengatur ketinggian air kolam. Pipa plastik tersebut dikaitkan dengan suatu pengait sebagai gantungan.
4. Minggu ketiga, benih dipindahkan ke kolam pendederan yang lain. Pengambilannya tidak boleh menggunakan jaring, tetapi dengan mengatur ketinggian pipa plastik.
5. Kolam pendederan yang baru berukuran 100cm x 200cm x 50cm, dengan bentuk dan konstruksi sama dengan yang sebelumnya.
Pemeliharaan kolam/tambak
-Kolam diberikan kapur 25-200 gram/m2 untuk memberantas hama dan bibit penyakit.
-Air dalam kolam/bak dibersihkan satu bulan sekali dengan cara mengganti semua air kotor tersebut dengan air bersih yang telah diendapkan dua malam.
-Kolam yang telah terjangkiti penyakit harus segera dikeringkan dan diberikan kapur sebanyak 200 gram/m2 selama satu minggu.
-Tepung kapur (CaO) ditebarkan merata di dasar kolam, kemudian dibiarkan kering lebih lanjut sampai tanah dasar kolam retak-retak.
Pemupukan
-Sebelum digunakan kolam dipupuk dulu. Pemupukan bermanfaat untuk menumbuhkan plankton hewani dan nabati yang menjadi makanan alami bagi benih lele.
-Pupuk yang digunakan adalah pupuk kandang (kotoran ayam) sebanyak 500-700 gram/m2. Bisa ditambahkan urea 15 gram/m2, TSP 20 gram/m2, dan amonium nitrat 15 gram/m2. Selanjutnya kolam dibiarkan selama tiga hari.
-Kolam diisi kembali dengan air segar. Mula-mula 30-50 cm dan biarkan selama satu minggu sampai warna air kolam berubah menjadi coklat atau kehijauan yang menunjukkan mulai banyak jasad-jasad renik yang tumbuh sebagai makanan alami lele.
-Secara bertahap ketinggian air ditambah, sebelum benih lele ditebar.
Penjarangan
Penjarangan adalah mengurangi padat penebaran. Mengapa? Karena ikan lele tumbuh besar sehingga ratio antara lele dengan volume kolam tidak seimbang.
Apabila tidak dilakukan penjarangan dapat mengakibatkan
a. Ikan berdesakan, sehingga tubuhnya akan luka.
b. Terjadi perebutan ransum makanan dan suatu saat dapat memicu mumculnya kanibalisme (ikan yang lebih kecil dimakan oleh ikan yang lebih besar).
c. Lingkungan kolam tidak sehat karena berlebihan CO2 dan NH3, dan O2 kurang sekali sehingga pertumbuhan ikan lele terhambat.
Cara penjarangan pada benih ikan lele
1. Minggu 1-2, kepadatan tebar 5.000 ekor/m2
2. Minggu 3-4, kepadatan tebar 1.125 ekor/m2
3. Minggu 5-6, kepadatan tebar 525 ekor/m2
Pakan
Makanan alamiah lele adalah zooplankton, larva, cacing, serangga air, dan fitoplankton. Ikan lele juga menyukai makanan busuk yang berprotein dan kotoran yang berasal dari kakus.
Selain makanan alami, lele perlu mendapat makanan tambahan. Lele yang dipelihara di kecomberan dapat diberikan makanan tambahan berupa sisa-sisa makanan dari rumah tangga, daun kubis, tulang ikan dan tulang ayam yang dihancurkan, usus ayam, dan bangkai.
Selain makanan sisa, makanan tambahan bisa berupa campuran dedak dan ikan rucah dengan perbandingan 9:1 atau campuran bekatul, jagung dan bekicot dengan perbandingan 2:1:1. Jika cukup modal, lele bisa diberikan makanan tambahan pelet.
Pemberian pakan
1. Hari pertama sampai ketiga, benih lele mendapat makanan dari kantong kuning telur yang dibawa sejak menetas.
2. Hari keempat sampai minggu kedua, benih lele diberi makan zooplankton yaitu Daphnia dan Artemia yang mengandung protein 60%. Makanan tersebut diberikan dalam jumlah 70% x biomassa setiap hari yang dibagi dalam empat kali pemberian. Makanan ditebar di sekitar tempat pemasukan air. Kira-kira 2-3 hari sebelum pemberian pakan zooplankton berakhir, benih lele harus dikenalkan dengan makanan dalam bentuk tepung yang berkadar protein 50%. Sedikit dari tepung tersebut diberikan kepada benih 10-15 menit sebelum pemberian zooplankton. Makanan yang berupa tepung dapat terbuat dari campuran kuning telur, tepung udang dan sedikit bubur nestum.
3. Minggu ketiga benih lele diberi pakan sebanyak 43% x biomassa setiap hari.
4. Minggu keempat dan kelima benih lele diberi pakan sebanyak 32% x biomassa setiap hari.
5. Minggu kelima benih lele diberi pakan sebanyak 21% x biomassa setiap hari.
6. Minggu ketiga benih lele diberi pakan sebanyak 43% x biomassa setiap hari.
7. Minggu keenam sudah bisa dicoba dengan pemberian pelet apung.
Pelet
Bahan makanan pelet buatan antara lain tepung ikan (27%), bungkil kacang kedele (20%), tepung terigu (10,5%), bungkil kacang tanah (18%), tepung kacang hijau (9%), tepung darah (5%), dedak (9%), vitamin (1%), mineral (0,5%).
Bahan-bahan itu dihaluskan untuk kemudian dicampur menjadi adonan seperti pasta. Adonan kemudian dicetak dan dikeringkan sampai kadar airnya kurang dari 10%.
Lemak bisa ditambahkan dengan dilumurkan pada pelet sebelum diberikan pada lele. Lumuran minyak juga berfungsi memperlambat pelet tenggelam.
Pellet mulai diperkenalkan pada ikan lele saat umur enam minggu dan diberikan pada ikan lele 10-15 menit sebelum pemberian makanan yang berbentuk tepung.
Pada minggu ketujuh dan seterusnya lele sudah dapat langsung diberi makanan yang berbentuk pelet.
Hindarkan pemberian pakan pada saat terik matahari, karena suhu tinggi dapat mengurangi nafsu makan lele.
Pencegahan penyakit
Untuk mencegah terkena penyakit karena bakteri, sebelum ditebarkan lele yang berumur dua minggu dimasukkan dulu ke dalam larutan formalin dengan dosis 200 ppm selama 10-15 menit. Setelah itu lele akan kebal selama enam bulan.
Pencegahan penyakit karena jamur dapat dilakukan dengan merendam lele dalam larutan Malachite Green Oxalate 2,5–3 ppm selama 30 menit.
PANEN
Lele sudah bisa dipanen setelah berumur 6-8 bulan, kecuali bila dikehendaki tetap saja bisa dipanen sewaktu-waktu. Berat rata-rata lele yang siap dipanen sekitar 200 gram per ekor.
Lele dumbo bisa dipanen setelah berumur 3-4 bulan yang beratnya sudah mencapai 200-300 gram per ekor. Bila dibiarkan 5-6 bulan lagi, lele dumbo akan mencapai berat 1-2 kg per ekor dengan panjang 60-70 cm.
Pemanenan sebaiknya pada pagi hari supaya lele tidak terlalu kepanasan.
Bila ingin dipanen seluruh lele, kolam dikeringkan sebagian sebelum ikan ditangkap menggunakan seser halus, tangan, lambit, tangguh atau dengan jaring.
Bila lele ingin dipancing, biarkan lele lapar lebih dahulu.
Bila menggunakan jaring, pemanenan dilakukan bersamaan dengan pemberikan pakan sehingga lele mudah ditangkap.
Setelah dipanen, biarkan selama 1-2 hari di dalam tong atau bak tanpa diberi makan agar bau tanah dan bau amisnya hilang.
Lele ditimbang dalam waktu singkat dan cukup sekali.
Pembersihan kolam selesai panen
Setelah ikan lele dipanen, kolam harus dibersihkan dengan cara:
-Dinding kolam disiram dengan larutan kapur sebanyak 20-200 gram/m2 kolam sampai rata.
-Lalu kolam disiram dengan larutan formalin 40% atau larutan permanganat kalikus (PK) dengan cara yang sama.
-Kolam dibilas dengan air bersih dan dibiarkan kering terkena sinar langsung agar penyakit yang ada di kolam terbunuh.
Minggu, 26 Oktober 2008
Sabtu, 25 Oktober 2008
Kekerdilan Akibat Stres Diawal Pemeliharaan
oleh ardhiborneogemilang
Ayam modern sekarang tampaknya memang lebih cengeng dan manja dibanding dengan ayam klasik yang dulu dipelihara secara tradisional. Penyebabnya tak lain karena temperatur, kelembaban dan kualitas udara yang baik sangat dibutuhkan untuk mengekspresikan potensi genetiknya.
Jika hal tersebut tidak dipenuhi, maka ayam modern akan mogok tumbuh atau bahkan mati. Dan ujung-ujungnya adalah urusan uang yaitu keuntungan atau kerugian peternak dalam usaha peternakannya. Demikian diungkapkan Drs Tony Unandar Private Poultry Farm Consultant dalam sebuah seminar teknis di Bogor, Selasa (18/12).
Menurut Tony, dalam urusan temperatur tubuh, ayam termasuk kategori hewan homeotermal alias berdarah panas. Tegasnya, temperatur tubuh relatif stabil dan berada dalam selang temperatur tertentu, tidak bergantung pada temperatur lingkungannya seperti hewan berdarah dingin.
Akan tetapi, dalam hirarki hewan bertulang belakang (vertebrata), ayam termasuk dalam kelas Aves (bangsa burung) yang merupakan kelas peralihan antara hewan berdarah dingin (poikilotermal) dengan hewan homeotermal. Itulah sebabnya pada ayam muda (umur dibawah 3 minggu) dikenal masa brooding (masa indukan), dimana pada masa ini kemampuan adaptasinya terhadap temperatur lingkungan masih rendah dan perkembangan lanjut sistem termoregulatornya masih terus terjadi.
Lebih lanjut, Tony Unandar menjelaskan bahwa pengaturan temperatur tubuh hewan homeotermal relatif kompleks dan merupakan sirkuit yang terdiri dari beberapa komponen. Menurut ahli, pengaturan temperatur tubuh ayam dilakukan oleh 4 komponen penting, yaitu bagian depan (anterior) hipotalamus, bagian pre-optik otak besar (cerebrum), tali syaraf otak kesepuluh (nervus vagus), dan tali-tali syaraf tepi yang sensitif terhadap temperatur (temperatur sensitive nerves).
Ayam umur sehari atau DOC belum dapat mengatur temperatur tubuhnya dengan baik. Mekanisme pengaturan temperatur tubuh yang dilakukan oleh sistem termoregulator baru terjadi secara optimal ketika ayam berumur 7-21 hari.
Dilain pihak, komponen termoregulator berupa tali-tali syaraf yang sensitif terhadap temperatur pada ayam muda sudah berfungsi dengan baik ketika ayam berumur sehari dan sebagian besar terletak di telapak kaki. Itulah sebabnya, walaupun komponen termoregulator lainnya (terutama komponen yang merupakan bagian dari otak besar) belum berkembang dengan baik, telapak kaki merupakan organ sensori yang paling penting pada saat DOC berinteraksi pertama kali dengan lingkungannya.
Waspada Litter yang Dingin
Reignier dan Kelley pada tahun 1981 melaporkan pertama kali fenomena renyatan temperatur (temperature shock) pada DOC. Kondisi ini bisa terjadi jika seekor DOC diletakkan pada permukaan litter dengan temperatur rendah, khususnya pada temperatur di bawah 25oC. Itulah sebabnya, untuk menghindari terjadinya renyatan temperatur pada tahap awal pemeliharaan ayam, pemanas harus dinyalakan minimum satu jam sebelum DOC ditebar di atas litter dalam indukan buatan.
Tony Unandar mengutip hasil penelitian beberapa ahli menegaskan bahwa renyatan temperatur tidak bisa dianggap remeh karena menimbulkan beberapa mekanisme lanjut, yaitu meningkatnya kadar adenocorticotropic hormone (ACTH) yang merupakan suatu indikator terjadinya stres pada DOC yang mengalami renyatan temperatur.
Kadar ACTH yang lebih tinggi dari normal akan membawa dampak lanjut berupa terganggunya proses penyerapan sisa kuning telur. Ini berarti, penyerapan zat kebal induk dan komponen nutrisi lainnya yang terkandung dalam kuning telur jelas terhambat. Di lain pihak, kadar ACTH yang berlebihan juga akan memberikan efek lazy leucocytes syndrome, yaitu suatu kondisi dimana butir darah putih tidak memberikan respon yang optimal terhadap keberadaan benda asing alias patogen yangmenginvasi tubuh ayam bersangkutan.
Manifestasi lapangan dari kejadian-kejadian tersebut di atas adalah terganggunya pertumbuhan lanjut ayam dengan berbagai derajat keparahan seperti kekerdilan dan lambat tumbuh dan keseragaman yang jelek. Serta rentannya ayam terhadap serangan mikroorganisme dari lingkungannya, termasuk mikroorganisme yang terdapat dalam vaksin aktif (reaksi pasca vaksinasi akan berlebihan).
Selain itu renyatan temperatur juga ditunjukkan dengan adanya perubahan dalam tingkah laku (behavior) ayam yang sangat signifikan. Dalam keadaan kondisi normal, di mana temperatur permukaan litter sesuai dengan yang diinginkan oleh DOC yaitu sekitar 29-31 oC, maka dalam tempo kurang dari 15 detik setelah ditebar, DOC akan melakukan aktivitas biologis lanjutan, misalnya melakukan pergerakan (movement), minum dan makan.
Jika terjadi renyatan temperatur maka DOC akan malas bergerak, minum dan makan. Ini berarti, gangguan pertumbuhan dan kematian ayam dengan berbagai derajat keparahan akibat dehidrasi dan hipoglisemia dengan mudah terjadi pada fase lanjutnya.
Stres Bisa Lewat Air Minum
Sementara itu, menurut Pattison (1997), renyatan temperatur dapat juga terjadi akibat DOC mengkonsumsi air minum dengan tempertaur yang rendah (<20 oC). Air minum dengan temperatur rendah dapat menurunkan temperatur tubuh ayam secara mendadak. Dilaporkan pula, DOC cenderung menolak untuk minum jika suhu air minum dibawah 15 oC.
Peneliti lain mengungkapkan bahwa pemberian air minum hangat menstimulasi peningkatan gerakan peristaltik usus dari dibawah 5 kali per menit menjadi 12-15 kali per menit. Meningkatnya gerakan peristaltik ini akan juga menstimulasi perkembangan alat-alat pencernaan yang sangat diperlukan mencerna makanan.
Jika gerakan peristaltik usus tidka optimal, maka DOC akan mengalami kesulitan pada saat defekasi (buang kotoran) berupa terjadinya perlengketan kotoran pada kloaka (cloacal pasting).
Selain menstimulasi perkembangan alat-alat pencernaan air minum yang hangat juga menstimulasi perkembangan hiperplasia alat pertahanan tubuh. Serta memperbaiki penyerapan sisa kuning telur yang berarti penyerapan zat kebal induk juga akan berlangsung dengan baik.
Diakhir presentasinya Drs Tony Unandar menyimpulkan bahwa ketebalan litter sebaiknya tidak boleh kurang dari 8 cm dan pemanas sudah harus dinyalakan setidaknya 2 jam sebelum ayam datang agar suhu permukaan litter sesuai dengan kenyamanan ayam yaitu 29-31 oC. Sementara air minum yang diberikan sebaiknya bersuhu 24-25 oC atau bahkan lebih baik jika dimasak terlebih dahulu untuk mematikan bakteri patogen. Air minum yang hangat menstimulasi gerakan peristaltik usus. Gerakan peristaltik usus yang semakin cepat membuat ayam semakin cepat lapar dan ingin makan. Persiapan brooding yang baik akan mencegah stres dini di fase pemeliharaan awal yang mencegah dampak buruk difase pertumbuhan berikutnya. Gagalnya pertumbuhan di fase awal tidak bisa dikompensasi di fase pertumbuhan berikutnya.
Ayam modern sekarang tampaknya memang lebih cengeng dan manja dibanding dengan ayam klasik yang dulu dipelihara secara tradisional. Penyebabnya tak lain karena temperatur, kelembaban dan kualitas udara yang baik sangat dibutuhkan untuk mengekspresikan potensi genetiknya.
Jika hal tersebut tidak dipenuhi, maka ayam modern akan mogok tumbuh atau bahkan mati. Dan ujung-ujungnya adalah urusan uang yaitu keuntungan atau kerugian peternak dalam usaha peternakannya. Demikian diungkapkan Drs Tony Unandar Private Poultry Farm Consultant dalam sebuah seminar teknis di Bogor, Selasa (18/12).
Menurut Tony, dalam urusan temperatur tubuh, ayam termasuk kategori hewan homeotermal alias berdarah panas. Tegasnya, temperatur tubuh relatif stabil dan berada dalam selang temperatur tertentu, tidak bergantung pada temperatur lingkungannya seperti hewan berdarah dingin.
Akan tetapi, dalam hirarki hewan bertulang belakang (vertebrata), ayam termasuk dalam kelas Aves (bangsa burung) yang merupakan kelas peralihan antara hewan berdarah dingin (poikilotermal) dengan hewan homeotermal. Itulah sebabnya pada ayam muda (umur dibawah 3 minggu) dikenal masa brooding (masa indukan), dimana pada masa ini kemampuan adaptasinya terhadap temperatur lingkungan masih rendah dan perkembangan lanjut sistem termoregulatornya masih terus terjadi.
Lebih lanjut, Tony Unandar menjelaskan bahwa pengaturan temperatur tubuh hewan homeotermal relatif kompleks dan merupakan sirkuit yang terdiri dari beberapa komponen. Menurut ahli, pengaturan temperatur tubuh ayam dilakukan oleh 4 komponen penting, yaitu bagian depan (anterior) hipotalamus, bagian pre-optik otak besar (cerebrum), tali syaraf otak kesepuluh (nervus vagus), dan tali-tali syaraf tepi yang sensitif terhadap temperatur (temperatur sensitive nerves).
Ayam umur sehari atau DOC belum dapat mengatur temperatur tubuhnya dengan baik. Mekanisme pengaturan temperatur tubuh yang dilakukan oleh sistem termoregulator baru terjadi secara optimal ketika ayam berumur 7-21 hari.
Dilain pihak, komponen termoregulator berupa tali-tali syaraf yang sensitif terhadap temperatur pada ayam muda sudah berfungsi dengan baik ketika ayam berumur sehari dan sebagian besar terletak di telapak kaki. Itulah sebabnya, walaupun komponen termoregulator lainnya (terutama komponen yang merupakan bagian dari otak besar) belum berkembang dengan baik, telapak kaki merupakan organ sensori yang paling penting pada saat DOC berinteraksi pertama kali dengan lingkungannya.
Waspada Litter yang Dingin
Reignier dan Kelley pada tahun 1981 melaporkan pertama kali fenomena renyatan temperatur (temperature shock) pada DOC. Kondisi ini bisa terjadi jika seekor DOC diletakkan pada permukaan litter dengan temperatur rendah, khususnya pada temperatur di bawah 25oC. Itulah sebabnya, untuk menghindari terjadinya renyatan temperatur pada tahap awal pemeliharaan ayam, pemanas harus dinyalakan minimum satu jam sebelum DOC ditebar di atas litter dalam indukan buatan.
Tony Unandar mengutip hasil penelitian beberapa ahli menegaskan bahwa renyatan temperatur tidak bisa dianggap remeh karena menimbulkan beberapa mekanisme lanjut, yaitu meningkatnya kadar adenocorticotropic hormone (ACTH) yang merupakan suatu indikator terjadinya stres pada DOC yang mengalami renyatan temperatur.
Kadar ACTH yang lebih tinggi dari normal akan membawa dampak lanjut berupa terganggunya proses penyerapan sisa kuning telur. Ini berarti, penyerapan zat kebal induk dan komponen nutrisi lainnya yang terkandung dalam kuning telur jelas terhambat. Di lain pihak, kadar ACTH yang berlebihan juga akan memberikan efek lazy leucocytes syndrome, yaitu suatu kondisi dimana butir darah putih tidak memberikan respon yang optimal terhadap keberadaan benda asing alias patogen yangmenginvasi tubuh ayam bersangkutan.
Manifestasi lapangan dari kejadian-kejadian tersebut di atas adalah terganggunya pertumbuhan lanjut ayam dengan berbagai derajat keparahan seperti kekerdilan dan lambat tumbuh dan keseragaman yang jelek. Serta rentannya ayam terhadap serangan mikroorganisme dari lingkungannya, termasuk mikroorganisme yang terdapat dalam vaksin aktif (reaksi pasca vaksinasi akan berlebihan).
Selain itu renyatan temperatur juga ditunjukkan dengan adanya perubahan dalam tingkah laku (behavior) ayam yang sangat signifikan. Dalam keadaan kondisi normal, di mana temperatur permukaan litter sesuai dengan yang diinginkan oleh DOC yaitu sekitar 29-31 oC, maka dalam tempo kurang dari 15 detik setelah ditebar, DOC akan melakukan aktivitas biologis lanjutan, misalnya melakukan pergerakan (movement), minum dan makan.
Jika terjadi renyatan temperatur maka DOC akan malas bergerak, minum dan makan. Ini berarti, gangguan pertumbuhan dan kematian ayam dengan berbagai derajat keparahan akibat dehidrasi dan hipoglisemia dengan mudah terjadi pada fase lanjutnya.
Stres Bisa Lewat Air Minum
Sementara itu, menurut Pattison (1997), renyatan temperatur dapat juga terjadi akibat DOC mengkonsumsi air minum dengan tempertaur yang rendah (<20 oC). Air minum dengan temperatur rendah dapat menurunkan temperatur tubuh ayam secara mendadak. Dilaporkan pula, DOC cenderung menolak untuk minum jika suhu air minum dibawah 15 oC.
Peneliti lain mengungkapkan bahwa pemberian air minum hangat menstimulasi peningkatan gerakan peristaltik usus dari dibawah 5 kali per menit menjadi 12-15 kali per menit. Meningkatnya gerakan peristaltik ini akan juga menstimulasi perkembangan alat-alat pencernaan yang sangat diperlukan mencerna makanan.
Jika gerakan peristaltik usus tidka optimal, maka DOC akan mengalami kesulitan pada saat defekasi (buang kotoran) berupa terjadinya perlengketan kotoran pada kloaka (cloacal pasting).
Selain menstimulasi perkembangan alat-alat pencernaan air minum yang hangat juga menstimulasi perkembangan hiperplasia alat pertahanan tubuh. Serta memperbaiki penyerapan sisa kuning telur yang berarti penyerapan zat kebal induk juga akan berlangsung dengan baik.
Diakhir presentasinya Drs Tony Unandar menyimpulkan bahwa ketebalan litter sebaiknya tidak boleh kurang dari 8 cm dan pemanas sudah harus dinyalakan setidaknya 2 jam sebelum ayam datang agar suhu permukaan litter sesuai dengan kenyamanan ayam yaitu 29-31 oC. Sementara air minum yang diberikan sebaiknya bersuhu 24-25 oC atau bahkan lebih baik jika dimasak terlebih dahulu untuk mematikan bakteri patogen. Air minum yang hangat menstimulasi gerakan peristaltik usus. Gerakan peristaltik usus yang semakin cepat membuat ayam semakin cepat lapar dan ingin makan. Persiapan brooding yang baik akan mencegah stres dini di fase pemeliharaan awal yang mencegah dampak buruk difase pertumbuhan berikutnya. Gagalnya pertumbuhan di fase awal tidak bisa dikompensasi di fase pertumbuhan berikutnya.
Sistem Reproduksi Ayam Jantan
Sistem reproduksi pada ayam jantan berbeda dengan ayam betina.
Alat reproduksi ayam jantan dibagi dalam tiga bagian utama, yaitu sepasang testis, sepasang saluran deferens, dan kloaka.
Testis
Testis ayam jantan terletak di rongga badan dekat tulang belakang, melekat pada bagian dorsal dari rongga abdomen dan dibatasi oleh ligamentum mesorchium, berdekatan dengan aorta dan vena cavar, atau di belakang paru-paru bagian depan dari ginjal. Meskipun dekat dengan rongga udara, temperatur testis selalu 41o - 43o C karena spermatogenesis (pembentukan sperma) akan terjadi pada temperatur tersebut.
Testis ayam berbentuk biji buah buncis dengan warna putih krem. Testis terbungkus oleh dua lapisan tipis transparan, lapisan albugin yang lunak. Bagian dalam dari testid terdiri atas tubuli seminiferi (85% - 95% dari volume testis), yang merupakan tempat terjadinya spermatogenesis, dan jaringan intertitial yang terdiri atas sel glanduler (sel Leydig) tempat disekresikannya hormon steroid, androgen, dan testosteron. Besarnya testis tergantung pada umur, strain, musim, dan pakan.
2. Saluran Deferens
Saluran deferens dibagi menjadi dua bagian, yaitu bagian atas yang merupakan muara sperma dari testis, serta bagian bawah yang merupakan perpanjangan dari saluran epididimis dan dinamakan saluran deferens.
Saluran deferens ini akhirnya bermuara di kloaka pada daerah proktodeum yang berseberangan dengan urodium dan koprodeum. Di dalam saluran deferens, sperma mengalami pemasakan dan penyimpanan sebelum diejakulasikan. Pemasakan dan penyimpanan sperma terjadi pada 65% bagian distal saluran deferens.
3. Alat Kopulasi
Alat kopulasi pada ayam berupa papila (penis) yang mengalami rudimenter, kecuali pada itik berbentuk spiral yang panjangnya 12-18 cm. Pada papila ini juga diproduksi cairan transparan yang bercampur dengan sperma saat terjadinya kopulasi.
++ Mekanisme Spermatogenesis ++
Spermatogenesis adalah proses pembentukan sel sperma yang terjadi di epitelium (tubuli) seminiferi di bawh kontrol hormon gonadotropin dan hipofisis (pituitaria bagian depan). Tubuli seminiferi ini terdiri atas sel sertoli dan sel germinalis. Spermatogenesis terjadi dalam tiga fase, yaitu fase spermatogenial, fase meiosis, dan fase spermiogenesis yang membutuhkan waktu 13 - 14 hari.
Alat reproduksi ayam jantan dibagi dalam tiga bagian utama, yaitu sepasang testis, sepasang saluran deferens, dan kloaka.
Testis
Testis ayam jantan terletak di rongga badan dekat tulang belakang, melekat pada bagian dorsal dari rongga abdomen dan dibatasi oleh ligamentum mesorchium, berdekatan dengan aorta dan vena cavar, atau di belakang paru-paru bagian depan dari ginjal. Meskipun dekat dengan rongga udara, temperatur testis selalu 41o - 43o C karena spermatogenesis (pembentukan sperma) akan terjadi pada temperatur tersebut.
Testis ayam berbentuk biji buah buncis dengan warna putih krem. Testis terbungkus oleh dua lapisan tipis transparan, lapisan albugin yang lunak. Bagian dalam dari testid terdiri atas tubuli seminiferi (85% - 95% dari volume testis), yang merupakan tempat terjadinya spermatogenesis, dan jaringan intertitial yang terdiri atas sel glanduler (sel Leydig) tempat disekresikannya hormon steroid, androgen, dan testosteron. Besarnya testis tergantung pada umur, strain, musim, dan pakan.
2. Saluran Deferens
Saluran deferens dibagi menjadi dua bagian, yaitu bagian atas yang merupakan muara sperma dari testis, serta bagian bawah yang merupakan perpanjangan dari saluran epididimis dan dinamakan saluran deferens.
Saluran deferens ini akhirnya bermuara di kloaka pada daerah proktodeum yang berseberangan dengan urodium dan koprodeum. Di dalam saluran deferens, sperma mengalami pemasakan dan penyimpanan sebelum diejakulasikan. Pemasakan dan penyimpanan sperma terjadi pada 65% bagian distal saluran deferens.
3. Alat Kopulasi
Alat kopulasi pada ayam berupa papila (penis) yang mengalami rudimenter, kecuali pada itik berbentuk spiral yang panjangnya 12-18 cm. Pada papila ini juga diproduksi cairan transparan yang bercampur dengan sperma saat terjadinya kopulasi.
++ Mekanisme Spermatogenesis ++
Spermatogenesis adalah proses pembentukan sel sperma yang terjadi di epitelium (tubuli) seminiferi di bawh kontrol hormon gonadotropin dan hipofisis (pituitaria bagian depan). Tubuli seminiferi ini terdiri atas sel sertoli dan sel germinalis. Spermatogenesis terjadi dalam tiga fase, yaitu fase spermatogenial, fase meiosis, dan fase spermiogenesis yang membutuhkan waktu 13 - 14 hari.
Sistem Reproduksi Ayam Betina
Ovarium dan oviduk. Ovarium adalah tempat sintesis hormon steroid seksual, gametogenesis, dan perkembangan serta pemasakan kuning telur (folikel). Oviduk adalah tempat menerima kuning telur masak, sekresi putih telur, dan pembentukan kerabang telur. Pada unggas umumnya dan pada ayam khususnya, hanya ovarium kiri yang berkembang dan berfungsi, sedangkan yang bagian kanan mengalami rudimenter.
Ovarium. Ovarium pada unggas dinamakan juga folikel. Bentuk ovarium seperti buah anggur dan terletak pada rongga perut berdekatan dengan ginjal kiri dan bergantung pada ligamentum meso-ovarium. Besar ovarium pada saat ayam menetas 0,3 g kemudian mencapai panjang 1,5 cm pada ayam betina umur 12 minggu dan mempunyai berat 60 g pada tiga minggu sebelum dewasa kelamin.
Ovarium terbagi dalam dua bagian, yaitu cortex pada bagian luar dan medulla pada bagian dalam. Cortex mengandung folikel dan pada folikel terdapat sel-sel telur. Jumlah sel telur dapat mencapai lebih dari 12.000 buah. Namun, sel telur yang mampu masak hanya beberapa buah saja (pada ayam dara dapat mencapai jutaan buah).
Folikel akan masak pada 9-10 hari sebelum ovulasi. Karena pengaruh karotenoid pakan ataupun karotenoid yang tersimpan di tubuh ayam yang tidak homogen maka penimbunan materi penyusun folikel menjadikan lapisan konsentris tidak seragam. Proses pembentukan ovum dinamakan vitelogeni (vitelogenesis), yang merupakan sintesis asam lemak di hati yang dikontrol oleh hormon estrogen, kemudian oleh darah diakumulasikan di ovarium sebagai volikel atau ovum yang dinamakan yolk (kuning telur).
Dikenal tiga fase perkembangan yolk, yaitu fase cepat antara 4-7 hari sebelum ovulasi dan fase lambat pada 10-8 hari sebelum ovulasi, serta pada 1-2 hari sebelum ovulasi. Akibat perkembangan cepat tersebut maka akan terbentuk gambaran konsentris pada kuning telur. Hal ini disebabkan oleh perbedaan kadar xantofil dan karotenoid pada pakan yang dibelah oleh latebra yang menghubungkan antara inti yolk dan diskus germinalis.
Folikel dikelilingi oleh pembuluh darah, kecuali pada bagian stigma. Apabila ovum masak, stigma akan robek sehingga terjadi ovulasi. Robeknya stigma ini dikontrol oleh hormon LH. Melalui pembuluh darah ini, ovarium mendapat suplai makanan dari aorta dorsalis. Material kimiawi yang diangkut melalui sistem vaskularisasi ke dalam ovarium harus melalui beberapa lapisan, antara lain theca layer yang merupakan lapisan terluar yang bersifat permeabel sehingga memungkinkan cairan plasma dalam menembus ke jaringan di sekelilingnya. Lapisan kedua berupa lamina basalis yang berfungsi sebagai filter untuk menyaring komponen cairan plasma yang lebih besar. Lapisan ketiga sebelum sampai pada oocyte adalah lapisan perivitellin yang berupa material protein bersifat fibrous (berongga).
Dalam membran plasma, oocyte (calon folikel) berikatan dengan sejumlah reseptor yang akan membentuk endocitic sehingga terbentuklah material penyusun kuning telur. Sehingga besar penyusutan kuning telur adalah material granuler berupa high density lipoprotein (HDL) dan lipovitelin. Senyawa ini dengan ion kuat dan pH tinggi akan membentuk kompleks fosfoprotein, fosvitin, ion kalsium, dan ion besi. Senyawa-senyawa ini membentuk vitelogenin, yaitu prekursor protein yang disintesis di dalam hati sebagai respon terhadap estradiol.
Komponen vitelogenin lebih mudah larut dalam darah dalam bentuk kompleks lipida kalsium dan besi. Oleh adanya reseptor pada oocyte, akan terbentuk material kuning telur. proses pembentukan vitelogenin ini dinamakan vitelogenesis.
Penyusun utama kuning telur adalah air, lipoprotein, protein, mineral, dan pigmen. Protein kuning telur diklasifikasikan menjadi dua kategori:
Livetin, yakni protein plasmatik yang terakumulasi pada kuning telur dan disintesis di hati hampir 60% dari total kuning telur.
Phosvitin dan lipoprptein yang terdiri dari high density lipoprotein (HDL) dan low density lipoprotein (LDL) yang disebut pula dengan granuler dan keduanya disintesis dalam hati. Pada ayam dewasa bertelur setiap hari disintesis 2,5 g protein/hari melalui hati. Sintesis ini dikontrol oleh hormon estrogen. Hasil sintesis bersama-sama dengan ion kalsium, besi dan zinc membentuk molekul kompleks yang mudah larut kemudian masuk ke dalam kuning telur.
Adapun urutan perjalanan terbentuknya sebutir telur pada saluran reproduksi ayam betina adalah sebagai berikut:
a. Infundibulum/papilon : panjang 9 cm fungsi untuk menangkap ovum yang masak. Bagian ini sangat tipis dan mensekresikan sumber protein yang mengelilingi membran vitelina. Kuning telur berada di bagian ini berkisar 15-30 menit. Pembatasan antara infundibulum dan magnum dinamakan sarang spermatozoa sebelum terjadi pembuahan.
b. Magnum : bagian yang terpanjang dari oviduk (33cm). Magnum tersusun dari glandula tubiler yang sangat sensibel. Sintesis dan sekresi putih telur terjadi disini. Mukosa dan magnum tersusun dari sel gobelet. Sel gobelet mensekresikan putih telur kental dan cair. Kuning telur berada di magnum untuk dibungkus dengan putih telur selama 3,5 jam.
c.Isthmus: mensekresikan membran atau selaput telur. Panjang saluran isthmus adalah 10 cm dan telur berada di sini berkisar 1 jam 15 menit sampai 1,5 jam. Isthmus bagian depan yang berdekatan dengan magnum berwarna putih, sedangkan 4 cm terakhir dari isthmus mengandung banyak pembuluh darah sehingga memberikan warna merah.
d. Uterus : disebut juga glandula kerabang telur, panjangnya 10 cm. Pada bagian ini terjadi dua fenomena, yaitu dehidrasi putih telur atau /plumping/ kemudian terbentuk kerabang (cangkang) telur. Warna kerabang telur yang terdiri atas sel phorphirin akan terbentuk di bagian ini pada akhir mineralisasi kerabang telur. Lama mineralisasi antara 20 - 21 jam.
e. Vagina: bagian ini hampir tidak ada sekresi di dalam pembentukan telur, kecuali pembentukan kutikula. Telur melewati vagina dengan cepat, yaitu sekitar tiga menit, kemudian dikeluarkan (/oviposition/) dan 30 menit setelah peneluran akan kembali terjadi ovulasi.
f. Kloaka: merupakan bagian paling ujung luar dari induk tempat dikeluarkannya telur. Total waktu untuk pembentukan sebutir telur adalah 25-26 jam. Ini salah satu penyebab mengapa ayam tidak mampu bertelur lebih dari satu butir/hari. Di samping itu, saluran reproduksi ayam betina bersifat tunggal. Artinya, hanya oviduk bagian kiri yang mampu berkembang. Padahal, ketika ada benda asing seperti /yolk/ (kuning telur) dan segumpal darah, ovulasi tidak dapat terjadi. Proses pengeluaran telur diatur oleh hormon oksitosin dari pituitaria bagian belakang.
Oleh : adioranye
Sumber : Tri Yuwanta, 2004, Dasar Ternak Unggas, Kanisius, Yogyakarta
Ovarium. Ovarium pada unggas dinamakan juga folikel. Bentuk ovarium seperti buah anggur dan terletak pada rongga perut berdekatan dengan ginjal kiri dan bergantung pada ligamentum meso-ovarium. Besar ovarium pada saat ayam menetas 0,3 g kemudian mencapai panjang 1,5 cm pada ayam betina umur 12 minggu dan mempunyai berat 60 g pada tiga minggu sebelum dewasa kelamin.
Ovarium terbagi dalam dua bagian, yaitu cortex pada bagian luar dan medulla pada bagian dalam. Cortex mengandung folikel dan pada folikel terdapat sel-sel telur. Jumlah sel telur dapat mencapai lebih dari 12.000 buah. Namun, sel telur yang mampu masak hanya beberapa buah saja (pada ayam dara dapat mencapai jutaan buah).
Folikel akan masak pada 9-10 hari sebelum ovulasi. Karena pengaruh karotenoid pakan ataupun karotenoid yang tersimpan di tubuh ayam yang tidak homogen maka penimbunan materi penyusun folikel menjadikan lapisan konsentris tidak seragam. Proses pembentukan ovum dinamakan vitelogeni (vitelogenesis), yang merupakan sintesis asam lemak di hati yang dikontrol oleh hormon estrogen, kemudian oleh darah diakumulasikan di ovarium sebagai volikel atau ovum yang dinamakan yolk (kuning telur).
Dikenal tiga fase perkembangan yolk, yaitu fase cepat antara 4-7 hari sebelum ovulasi dan fase lambat pada 10-8 hari sebelum ovulasi, serta pada 1-2 hari sebelum ovulasi. Akibat perkembangan cepat tersebut maka akan terbentuk gambaran konsentris pada kuning telur. Hal ini disebabkan oleh perbedaan kadar xantofil dan karotenoid pada pakan yang dibelah oleh latebra yang menghubungkan antara inti yolk dan diskus germinalis.
Folikel dikelilingi oleh pembuluh darah, kecuali pada bagian stigma. Apabila ovum masak, stigma akan robek sehingga terjadi ovulasi. Robeknya stigma ini dikontrol oleh hormon LH. Melalui pembuluh darah ini, ovarium mendapat suplai makanan dari aorta dorsalis. Material kimiawi yang diangkut melalui sistem vaskularisasi ke dalam ovarium harus melalui beberapa lapisan, antara lain theca layer yang merupakan lapisan terluar yang bersifat permeabel sehingga memungkinkan cairan plasma dalam menembus ke jaringan di sekelilingnya. Lapisan kedua berupa lamina basalis yang berfungsi sebagai filter untuk menyaring komponen cairan plasma yang lebih besar. Lapisan ketiga sebelum sampai pada oocyte adalah lapisan perivitellin yang berupa material protein bersifat fibrous (berongga).
Dalam membran plasma, oocyte (calon folikel) berikatan dengan sejumlah reseptor yang akan membentuk endocitic sehingga terbentuklah material penyusun kuning telur. Sehingga besar penyusutan kuning telur adalah material granuler berupa high density lipoprotein (HDL) dan lipovitelin. Senyawa ini dengan ion kuat dan pH tinggi akan membentuk kompleks fosfoprotein, fosvitin, ion kalsium, dan ion besi. Senyawa-senyawa ini membentuk vitelogenin, yaitu prekursor protein yang disintesis di dalam hati sebagai respon terhadap estradiol.
Komponen vitelogenin lebih mudah larut dalam darah dalam bentuk kompleks lipida kalsium dan besi. Oleh adanya reseptor pada oocyte, akan terbentuk material kuning telur. proses pembentukan vitelogenin ini dinamakan vitelogenesis.
Penyusun utama kuning telur adalah air, lipoprotein, protein, mineral, dan pigmen. Protein kuning telur diklasifikasikan menjadi dua kategori:
Livetin, yakni protein plasmatik yang terakumulasi pada kuning telur dan disintesis di hati hampir 60% dari total kuning telur.
Phosvitin dan lipoprptein yang terdiri dari high density lipoprotein (HDL) dan low density lipoprotein (LDL) yang disebut pula dengan granuler dan keduanya disintesis dalam hati. Pada ayam dewasa bertelur setiap hari disintesis 2,5 g protein/hari melalui hati. Sintesis ini dikontrol oleh hormon estrogen. Hasil sintesis bersama-sama dengan ion kalsium, besi dan zinc membentuk molekul kompleks yang mudah larut kemudian masuk ke dalam kuning telur.
Adapun urutan perjalanan terbentuknya sebutir telur pada saluran reproduksi ayam betina adalah sebagai berikut:
a. Infundibulum/papilon : panjang 9 cm fungsi untuk menangkap ovum yang masak. Bagian ini sangat tipis dan mensekresikan sumber protein yang mengelilingi membran vitelina. Kuning telur berada di bagian ini berkisar 15-30 menit. Pembatasan antara infundibulum dan magnum dinamakan sarang spermatozoa sebelum terjadi pembuahan.
b. Magnum : bagian yang terpanjang dari oviduk (33cm). Magnum tersusun dari glandula tubiler yang sangat sensibel. Sintesis dan sekresi putih telur terjadi disini. Mukosa dan magnum tersusun dari sel gobelet. Sel gobelet mensekresikan putih telur kental dan cair. Kuning telur berada di magnum untuk dibungkus dengan putih telur selama 3,5 jam.
c.Isthmus: mensekresikan membran atau selaput telur. Panjang saluran isthmus adalah 10 cm dan telur berada di sini berkisar 1 jam 15 menit sampai 1,5 jam. Isthmus bagian depan yang berdekatan dengan magnum berwarna putih, sedangkan 4 cm terakhir dari isthmus mengandung banyak pembuluh darah sehingga memberikan warna merah.
d. Uterus : disebut juga glandula kerabang telur, panjangnya 10 cm. Pada bagian ini terjadi dua fenomena, yaitu dehidrasi putih telur atau /plumping/ kemudian terbentuk kerabang (cangkang) telur. Warna kerabang telur yang terdiri atas sel phorphirin akan terbentuk di bagian ini pada akhir mineralisasi kerabang telur. Lama mineralisasi antara 20 - 21 jam.
e. Vagina: bagian ini hampir tidak ada sekresi di dalam pembentukan telur, kecuali pembentukan kutikula. Telur melewati vagina dengan cepat, yaitu sekitar tiga menit, kemudian dikeluarkan (/oviposition/) dan 30 menit setelah peneluran akan kembali terjadi ovulasi.
f. Kloaka: merupakan bagian paling ujung luar dari induk tempat dikeluarkannya telur. Total waktu untuk pembentukan sebutir telur adalah 25-26 jam. Ini salah satu penyebab mengapa ayam tidak mampu bertelur lebih dari satu butir/hari. Di samping itu, saluran reproduksi ayam betina bersifat tunggal. Artinya, hanya oviduk bagian kiri yang mampu berkembang. Padahal, ketika ada benda asing seperti /yolk/ (kuning telur) dan segumpal darah, ovulasi tidak dapat terjadi. Proses pengeluaran telur diatur oleh hormon oksitosin dari pituitaria bagian belakang.
Oleh : adioranye
Sumber : Tri Yuwanta, 2004, Dasar Ternak Unggas, Kanisius, Yogyakarta
Probiotik Pengganti Antibiotik dalam Pakan Ternak
by. Samadi
Dimuat di rubrik Opini, koran Kompas, 13 September 2002
Tingginya kewaspadaan konsumen terutama di negara-negara maju akan makanan yang dikonsumsi terutama makanan yang berasal dari produk hewani mengilhami para nutritionist menciptakan makanan ternak yang tidak hanya mencukupi kebutuhan nutrisi (energi, asam amino, vitamin, dan mineral) bagi tenak itu sendiri tetapi juga keamanan bagi konsumen terhadap makanan yang dikonsumsi (daging, telur, dan susu).
Penggunaan antibiotik atau antimikrobial sebagai bahan aditif dalam pakan ternak telah berlangsung lebih dari 40 tahun. Senyawa antibiotik tersebut digunakan sebagai growth promotor dalam jumlah yang relatif kecil namun dapat meningkatkan efisiensi pakan (feed efficiency) dan reproduksi ternak sehingga dengan penggunaan bahan aditif tersebut peternak dapat memperoleh keuntungan lebih. Namun, akhir-akhir ini penggunaan senyawa antibiotik mengalami penurunan dan bahkan di beberapa negara telah melarang penggunaan antibiotik sebagai bahan aditif dalam pakan ternak, hal ini disebabkan karena dua faktor utama. Pertama, kemungkinan hadirnya residu dari antibiotik yang akan menjadi racun bagi konsumen, di samping itu antibiotik dapat menciptakan mikro-organisme yang resisten dalam tubuh manusia atau ternak (terutama bakteri-bakteri pathogen seperti Salmonella, E. coli dan Clostidium perfrinens). Dilaporkan penggunaan antibiotik pada pakan ternak unggas di North Carolina (Amerika Serikat) mengakibatkan resistensi ternak terhadap Enrofloxacin, merupakan salah satu antibiotik yang direkomendasikan untuk membasmi bakteri Escherichia coli.
Makanan fungsional
Sebagai pengganti antibiotik nutritionist merekomendasikan peternak menggunakan probiotik sebagai bahan aditif. Probiotik tergolong dalam makanan fungsional, di mana bahan makanan ini mengandung komponen-komponen yang dapat meningkatkan kesehatan ternak dengan cara memanipulasi komposisi bakteri yang ada dalam saluran pencernaan ternak. Berbeda dengan antibiotik, probiotik merupakan mikro-organisme yang dapat meningkatkan pertumbuhan dan efisiensi pakan ternak tanpa mengakibatkan terjadinya proses penyerapan komponen probiotik dalam tubuh ternak, sehingga tidak terdapat residu dan tidak terjadinya mutasi pada ternak. Sementara antibiotik merupakan senyawa kimia murni yang mengalami proses penyerapan dalam saluran pencernaan. Di samping probiotik juga terdapat prebiotik. Prebiotik merupakan bahan pakan berupa serat {B(2-1) D fructans} yang tidak dapat dicerna oleh ternak berperut tunggal (monogastric seperti ayam atau babi). Serat tersebut dapat menjadi pemicu untuk peningkatan bakteri yang menguntungkan bagi ternak seperti Lactobacillus dan Bifidobacteria. Sebagai perbandingan organisme yang mengonsumsi karbohidrat bukan berupa serat seperti sukrosa atau pati komposisi bakteria pada saluran pencernaan didominasi oleh bakteri Bacteriodes (72 persen) sementara pemberian makanan berupa serat seperti oligofruktosa atau inulin meningkatkan komposisi Bifidobacteria sampai 81 persen.
Istilah probiotik pertama sekali diperkenalkan oleh Perker (1974) menggambarkan tentang keseimbangan mikro-organisme dalam saluran pencernaan. Pada saat ternak mengalami stres, keseimbangan mikro-organisme dalam saluran pencernaan terganggu, mengakibatkan sistem pertahanan tubuh menurun dan bakteri-bakteri pathogen berkembang dengan cepat. Pemberian probiotik dapat menjaga keseimbangan komposisi mikro-organisme dalam sistem pencernaan ternak berakibat meningkatnya daya cerna bahan pakan dan menjaga kesehatan ternak.
Sebagian besar probiotik yang digunakan sebagai aditif adalah tergolong bakteri termasuk dalam species Lactobacillus (L acidophilus, L lactis, L plantarum) dan Bifidobacterium (B bifidum, B thermophilum), di samping itu terdapat juga bakteri Streptococcus lactis dan jenis fungi seperti Aspergilus niger, Aspergilus oryzue. Manfaat probiotik sebagai bahan aditif ditunjukkan dengan meningkatnya ketersediaan lemak dan protein bagi ternak, di samping itu probiotik juga meningkatkan kandungan vitamin B kompleks melalui fermentasi makanan. Probiotik juga dapat meningkatkan kekebalan (immunity), mencegah alergi makanan dan kanker (colon cancer). Hasil penelitian menunjukkan insiden kanker lambung pada ternak yang diberikan probiotik (Lactobacillus GG) berpengaruh nyata terhadap ternak yang tidak diberikan probiotik. Di mana ternak yang diteliti terlebih dahulu diinjeksi dengan dimethylhydrazine (penyebab kanker).
Metchnikoff (1907) warga negara berkebangsaan Rusia memenangkan hadiah Nobel menarik dunia berkat penemuannya tentang kesehatan makhluk hidup berkaitan dengan mikro-organisme yang terdapat pada saluran pencernaan. Metchnikoff menyatakan bahwa mikro-organisme yang terdapat pada saluran pencernaan terdiri dari dua jenis, ada yang menguntungkan dan ada yang merugikan. Pemberian yoghurt yang mengandung Lactobasillus bulgaricus (bakteri yang menguntungkan) meningkatkan kesehatan dan harapan hidup seperti terjadi pada penduduk Balkan. Prinsip kerja dari probiotik; bakteri-bakteri probiotik (lactobacillus dan Bifidobacterium) bekerja secara anaerob menghasilkan asam laktat mengakibatkan turunnya pH saluran pencernaan yang menghalangi perkembangan dan pertumbuhan bakteri-bakteri pathogen. Berbeda dengan bakteri pathogen (Escherichia coli) yang mendiami daerah dinding pencernaan untuk mengembangkan penyakit, bakteri-bakteri probiotik mendiami mukosa pencernaan yang juga berakibat perubahan komposisi dari bakteri yang terdapat dalam saluran pencernaan.
Pengaruh probiotik
Penelitian yang berkaitan dengan pemberian probiotik terhadap pakan ternak telah banyak dilakukan. Pemberian Lactobacillus acidophilus pada pakan ternak meningkatkan pertambahan berat badan sapi dan efesiensi makanan, sementara tingkat kematian ternak sapi menurun dari 7,5 persen menjadi 1,5 persen akibat pemberian probiotik. Pada ternak ayam pemberian Lactobacillus meningkatkan pertambahan berat badan 491,3 g/hari dibandingkan dengan kontrol 459,6 g/ hari. Namun, penelitian pada babi pengaruh probiotik baru jelas terlihat apabila ternak tersebut berada dalam kondisi stres, sementara keadaan normal tidak terdapat pengaruh nyata.
Di samping bakteri, fungsi juga digunakan sebagai probiotik. Saccharomyces cerevisiea dan Aspergillus oryzae merupakan jenis fungi yang banyak digunakan dalam pakan ternak. Saccharomyces cerevisiea mempunyai karakteristik khusus dalam pakan ternak karena kemampuannya memproduksi asam glutamat yang dapat meningkatkan palatability dari pakan tersebut. Berbeda dengan bakteri, fungsi merupakan mikro-organisme yang mempunyai tingkat resisten yang tinggi dan dapat hidup pada kondisi yang kurang menguntungkan, di samping itu juga fungsi mudah dikembang biakkan. Hasil penelitian menunjukkan bahwa pemberian Aspergillus niger meningkatkan berat badan 5,9 persen dan meningkatkan efisiensi pakan 0,8 persen. Peningkatan penampilan ternak akibat pemberian Aspergillus niger disebabkan oleh meningkatnya asam lemak terbang (volatile fatty acids) seperti asam asetat, asam butirat, dan asam propionat yang merupakan sumber energi bagi ternak terutama ternak ruminansia (sapi, kerbau, atau kambing). Juga dilaporkan bahwa pemberian Saccharomyces cerevisie dapat meningkatkan daya cerna protein dan serat seperti selulosa dan hemiselulosa. Transpor ternak dari satu tempat ke tempat lainnya dapat mengakibatkan ternak menjadi stres, penambahan fungsi pada pakan ternak selama masa perpindahan ternak dapat menjadi salah satu pemecahan masalahan.
Di samping probiotik, saat ini banyak dikembangkan berbagai jenis bahan aditif yang berasal dari produk mikro-organisme seperti enzim (proteinase, amilase, selulase, xylanase, pectinase, dan lain sebagainya) yang diberikan kepada ternak. Di berbagai negara akhir-akhir ini penelitian yang berkaitan dengan salah satu mikro-organisme yang memproduksi enzim phytase sedang gencar-gencarnya dilakukan. Enzim phytase sangat bermanfaat karena kemampuan enzim tersebut mengubah fosfor yang terdapat pada biji-bijian (jagung, padi, gandum, kacang kedelai, dan lain-lain) dalam bentuk tidak tersedia menjadi bentuk tersedia dan dapat diserap oleh ternak. Tanpa adanya phytase bagian besar pospor yang terdapat pada biji-bijian dikeluarkan melalui faeces, pada akhirnya dapat mencemari lingkungan melalui proses Eutropication (pengurangan air yang bermanfaat oleh organisme karena meningkatnya alga atau tanaman pengganggu dan berakibat rendahnya kandungan oksigen sebagai proses dekomposisi dari bahan alga tersebut).
Peluang bisnis industri pakan
Begitu besarnya manfaat penggunaan mikro-organisme sebagai bahan aditif pakan ternak, pada saat ini industri pakan di berbagai negara sedang mengembangkan teknik pembudidayaan jenis-jenis bakteri, jamur, dan protozoa, yang dikemas dalam bentuk pakan ternak untuk diperjualbelikan. Akhir-akhir ini negara-negara Eropa Barat sedang giat-giatnya memberantas pemakaian bahan-bahan antibiotik dan hormon sebagai pemicu produksi ternak, diharapkan pada tahun 2012 semua produksi ternak di Eropa barat bebas dari bahan kimia tersebut, sementara Jerman mencanangkan lebih dahulu (2006), produksi ternak dan pertanian bebas dari pemakaian bahan-bahan kimia (Ökologische produkte).
Industri pakan di berbagai negara seperti Jerman, Amerika Serikat, dan Australia telah bekerja sama dengan institut dan universitas untuk melakukan penelitian sebelum produknya dilemparkan ke pasar. Penelitian tersebut berkaitan dengan keoptimalan dosis dan keefektifan bahan tersebut terhadap produksi ternak. Protexin, K-99 Lacto, ProViva, BioGaia, Bio-Plus adalah contoh-contoh produk probiotik yang telah dipasarkan. Bagaimana dengan industri pakan Indonesia?
Samadi staf pengajar Fakultas Pertanian Prodi Peternakan Universitas Syiah Kuala, Darussalam-Banda Aceh
Dimuat di rubrik Opini, koran Kompas, 13 September 2002
Tingginya kewaspadaan konsumen terutama di negara-negara maju akan makanan yang dikonsumsi terutama makanan yang berasal dari produk hewani mengilhami para nutritionist menciptakan makanan ternak yang tidak hanya mencukupi kebutuhan nutrisi (energi, asam amino, vitamin, dan mineral) bagi tenak itu sendiri tetapi juga keamanan bagi konsumen terhadap makanan yang dikonsumsi (daging, telur, dan susu).
Penggunaan antibiotik atau antimikrobial sebagai bahan aditif dalam pakan ternak telah berlangsung lebih dari 40 tahun. Senyawa antibiotik tersebut digunakan sebagai growth promotor dalam jumlah yang relatif kecil namun dapat meningkatkan efisiensi pakan (feed efficiency) dan reproduksi ternak sehingga dengan penggunaan bahan aditif tersebut peternak dapat memperoleh keuntungan lebih. Namun, akhir-akhir ini penggunaan senyawa antibiotik mengalami penurunan dan bahkan di beberapa negara telah melarang penggunaan antibiotik sebagai bahan aditif dalam pakan ternak, hal ini disebabkan karena dua faktor utama. Pertama, kemungkinan hadirnya residu dari antibiotik yang akan menjadi racun bagi konsumen, di samping itu antibiotik dapat menciptakan mikro-organisme yang resisten dalam tubuh manusia atau ternak (terutama bakteri-bakteri pathogen seperti Salmonella, E. coli dan Clostidium perfrinens). Dilaporkan penggunaan antibiotik pada pakan ternak unggas di North Carolina (Amerika Serikat) mengakibatkan resistensi ternak terhadap Enrofloxacin, merupakan salah satu antibiotik yang direkomendasikan untuk membasmi bakteri Escherichia coli.
Makanan fungsional
Sebagai pengganti antibiotik nutritionist merekomendasikan peternak menggunakan probiotik sebagai bahan aditif. Probiotik tergolong dalam makanan fungsional, di mana bahan makanan ini mengandung komponen-komponen yang dapat meningkatkan kesehatan ternak dengan cara memanipulasi komposisi bakteri yang ada dalam saluran pencernaan ternak. Berbeda dengan antibiotik, probiotik merupakan mikro-organisme yang dapat meningkatkan pertumbuhan dan efisiensi pakan ternak tanpa mengakibatkan terjadinya proses penyerapan komponen probiotik dalam tubuh ternak, sehingga tidak terdapat residu dan tidak terjadinya mutasi pada ternak. Sementara antibiotik merupakan senyawa kimia murni yang mengalami proses penyerapan dalam saluran pencernaan. Di samping probiotik juga terdapat prebiotik. Prebiotik merupakan bahan pakan berupa serat {B(2-1) D fructans} yang tidak dapat dicerna oleh ternak berperut tunggal (monogastric seperti ayam atau babi). Serat tersebut dapat menjadi pemicu untuk peningkatan bakteri yang menguntungkan bagi ternak seperti Lactobacillus dan Bifidobacteria. Sebagai perbandingan organisme yang mengonsumsi karbohidrat bukan berupa serat seperti sukrosa atau pati komposisi bakteria pada saluran pencernaan didominasi oleh bakteri Bacteriodes (72 persen) sementara pemberian makanan berupa serat seperti oligofruktosa atau inulin meningkatkan komposisi Bifidobacteria sampai 81 persen.
Istilah probiotik pertama sekali diperkenalkan oleh Perker (1974) menggambarkan tentang keseimbangan mikro-organisme dalam saluran pencernaan. Pada saat ternak mengalami stres, keseimbangan mikro-organisme dalam saluran pencernaan terganggu, mengakibatkan sistem pertahanan tubuh menurun dan bakteri-bakteri pathogen berkembang dengan cepat. Pemberian probiotik dapat menjaga keseimbangan komposisi mikro-organisme dalam sistem pencernaan ternak berakibat meningkatnya daya cerna bahan pakan dan menjaga kesehatan ternak.
Sebagian besar probiotik yang digunakan sebagai aditif adalah tergolong bakteri termasuk dalam species Lactobacillus (L acidophilus, L lactis, L plantarum) dan Bifidobacterium (B bifidum, B thermophilum), di samping itu terdapat juga bakteri Streptococcus lactis dan jenis fungi seperti Aspergilus niger, Aspergilus oryzue. Manfaat probiotik sebagai bahan aditif ditunjukkan dengan meningkatnya ketersediaan lemak dan protein bagi ternak, di samping itu probiotik juga meningkatkan kandungan vitamin B kompleks melalui fermentasi makanan. Probiotik juga dapat meningkatkan kekebalan (immunity), mencegah alergi makanan dan kanker (colon cancer). Hasil penelitian menunjukkan insiden kanker lambung pada ternak yang diberikan probiotik (Lactobacillus GG) berpengaruh nyata terhadap ternak yang tidak diberikan probiotik. Di mana ternak yang diteliti terlebih dahulu diinjeksi dengan dimethylhydrazine (penyebab kanker).
Metchnikoff (1907) warga negara berkebangsaan Rusia memenangkan hadiah Nobel menarik dunia berkat penemuannya tentang kesehatan makhluk hidup berkaitan dengan mikro-organisme yang terdapat pada saluran pencernaan. Metchnikoff menyatakan bahwa mikro-organisme yang terdapat pada saluran pencernaan terdiri dari dua jenis, ada yang menguntungkan dan ada yang merugikan. Pemberian yoghurt yang mengandung Lactobasillus bulgaricus (bakteri yang menguntungkan) meningkatkan kesehatan dan harapan hidup seperti terjadi pada penduduk Balkan. Prinsip kerja dari probiotik; bakteri-bakteri probiotik (lactobacillus dan Bifidobacterium) bekerja secara anaerob menghasilkan asam laktat mengakibatkan turunnya pH saluran pencernaan yang menghalangi perkembangan dan pertumbuhan bakteri-bakteri pathogen. Berbeda dengan bakteri pathogen (Escherichia coli) yang mendiami daerah dinding pencernaan untuk mengembangkan penyakit, bakteri-bakteri probiotik mendiami mukosa pencernaan yang juga berakibat perubahan komposisi dari bakteri yang terdapat dalam saluran pencernaan.
Pengaruh probiotik
Penelitian yang berkaitan dengan pemberian probiotik terhadap pakan ternak telah banyak dilakukan. Pemberian Lactobacillus acidophilus pada pakan ternak meningkatkan pertambahan berat badan sapi dan efesiensi makanan, sementara tingkat kematian ternak sapi menurun dari 7,5 persen menjadi 1,5 persen akibat pemberian probiotik. Pada ternak ayam pemberian Lactobacillus meningkatkan pertambahan berat badan 491,3 g/hari dibandingkan dengan kontrol 459,6 g/ hari. Namun, penelitian pada babi pengaruh probiotik baru jelas terlihat apabila ternak tersebut berada dalam kondisi stres, sementara keadaan normal tidak terdapat pengaruh nyata.
Di samping bakteri, fungsi juga digunakan sebagai probiotik. Saccharomyces cerevisiea dan Aspergillus oryzae merupakan jenis fungi yang banyak digunakan dalam pakan ternak. Saccharomyces cerevisiea mempunyai karakteristik khusus dalam pakan ternak karena kemampuannya memproduksi asam glutamat yang dapat meningkatkan palatability dari pakan tersebut. Berbeda dengan bakteri, fungsi merupakan mikro-organisme yang mempunyai tingkat resisten yang tinggi dan dapat hidup pada kondisi yang kurang menguntungkan, di samping itu juga fungsi mudah dikembang biakkan. Hasil penelitian menunjukkan bahwa pemberian Aspergillus niger meningkatkan berat badan 5,9 persen dan meningkatkan efisiensi pakan 0,8 persen. Peningkatan penampilan ternak akibat pemberian Aspergillus niger disebabkan oleh meningkatnya asam lemak terbang (volatile fatty acids) seperti asam asetat, asam butirat, dan asam propionat yang merupakan sumber energi bagi ternak terutama ternak ruminansia (sapi, kerbau, atau kambing). Juga dilaporkan bahwa pemberian Saccharomyces cerevisie dapat meningkatkan daya cerna protein dan serat seperti selulosa dan hemiselulosa. Transpor ternak dari satu tempat ke tempat lainnya dapat mengakibatkan ternak menjadi stres, penambahan fungsi pada pakan ternak selama masa perpindahan ternak dapat menjadi salah satu pemecahan masalahan.
Di samping probiotik, saat ini banyak dikembangkan berbagai jenis bahan aditif yang berasal dari produk mikro-organisme seperti enzim (proteinase, amilase, selulase, xylanase, pectinase, dan lain sebagainya) yang diberikan kepada ternak. Di berbagai negara akhir-akhir ini penelitian yang berkaitan dengan salah satu mikro-organisme yang memproduksi enzim phytase sedang gencar-gencarnya dilakukan. Enzim phytase sangat bermanfaat karena kemampuan enzim tersebut mengubah fosfor yang terdapat pada biji-bijian (jagung, padi, gandum, kacang kedelai, dan lain-lain) dalam bentuk tidak tersedia menjadi bentuk tersedia dan dapat diserap oleh ternak. Tanpa adanya phytase bagian besar pospor yang terdapat pada biji-bijian dikeluarkan melalui faeces, pada akhirnya dapat mencemari lingkungan melalui proses Eutropication (pengurangan air yang bermanfaat oleh organisme karena meningkatnya alga atau tanaman pengganggu dan berakibat rendahnya kandungan oksigen sebagai proses dekomposisi dari bahan alga tersebut).
Peluang bisnis industri pakan
Begitu besarnya manfaat penggunaan mikro-organisme sebagai bahan aditif pakan ternak, pada saat ini industri pakan di berbagai negara sedang mengembangkan teknik pembudidayaan jenis-jenis bakteri, jamur, dan protozoa, yang dikemas dalam bentuk pakan ternak untuk diperjualbelikan. Akhir-akhir ini negara-negara Eropa Barat sedang giat-giatnya memberantas pemakaian bahan-bahan antibiotik dan hormon sebagai pemicu produksi ternak, diharapkan pada tahun 2012 semua produksi ternak di Eropa barat bebas dari bahan kimia tersebut, sementara Jerman mencanangkan lebih dahulu (2006), produksi ternak dan pertanian bebas dari pemakaian bahan-bahan kimia (Ökologische produkte).
Industri pakan di berbagai negara seperti Jerman, Amerika Serikat, dan Australia telah bekerja sama dengan institut dan universitas untuk melakukan penelitian sebelum produknya dilemparkan ke pasar. Penelitian tersebut berkaitan dengan keoptimalan dosis dan keefektifan bahan tersebut terhadap produksi ternak. Protexin, K-99 Lacto, ProViva, BioGaia, Bio-Plus adalah contoh-contoh produk probiotik yang telah dipasarkan. Bagaimana dengan industri pakan Indonesia?
Samadi staf pengajar Fakultas Pertanian Prodi Peternakan Universitas Syiah Kuala, Darussalam-Banda Aceh
Pencernaan Unggas
Pencernaan adalah penguraian bahan makanan ke dalam zat-zat makanan dalam saluran pencernaan untuk dapat diserap dan digunakan oleh jaringan-jaringan tubuh. Pada pencernaan tersangkut suatu seri proses mekanis dan khemis dan dipengaruhi oleh banyak faktor.
Unggas mengambil makanannya dengan paruh dan kemudian terus ditelan. Makanan tersebut disimpan dalam tembolok untuk dilunakkan dan dicampur dengan getah pencernaan proventrikulus dan kemudian digiling dalam empedal. Tidak ada enzim pencernaan yang dikeluarkan oleh empedal unggas. Fungsi utama alat tersebut adalah untuk memperkecil ukuran partikel-partikel makanan.
Dari empedal makanan yang bergerak melalui lekukan usus yang disebut duodenum, yang secara anatomis sejajar dengan pankreas. Pankreas tersebut mempunyai fungsi penting dalam pencernaan unggas seperti hanya pada spesies-spesies lainnya. Alat tersebut menghasilkan getah pankreas dalam jumlah banyak yang mengandung enzim-enzim amilolitik, lipolitik dan proteolitik. Enzim-enzim tersebut berturut-turut menghidrolisa pati, lemak, proteosa dan pepton. Empedu hati yang mengandung amilase, memasuki pula duodenum.
Bahan makanan bergerak melalui usus halus yang dindingnya mengeluarkan getah usus. Getah usus tersebut mengandung erepsin dan beberapa enzim yang memecah gula. Erepsin menyempurnakan pencernaan protein, dan menghasilkan asam-asam amino, enzim yang memecah gula mengubah disakharida ke dalam gula-gula sederhana (monosakharida) yang kemudian dapat diasimilasi tubuh. Penyerapan dilaksanakan melalui villi usus halus.
Unggas tidak mengeluarkan urine cair. Urine pada unggas mengalir kedalam kloaka dan dikeluarkan bersama-sama feses. Warna putih yang terdapat dalam kotoran ayam sebagian besar adalah asam urat, sedangkan nitrogen urine mammalia kebanyakan adalah urine. Saluran pencernaan yang relatif pendek pada unggas digambarkan pada proses pencernaan yang cepat (lebih kurang empat jam).
Pencernaan Karbohidrat
Setelah makanan yang dihaluskan melalui empedal ke lengkukan duodenal maka getah pankreatik dikeluarkan dari pankreas ke dalam lekukan duodenal. Pada waktu yang bersamaan, garam empedu alkalis yang dihasilkan dalam hati dan disimpan dalam kantong empedu dikeluarkan pula kedalam lekukan duodenal. Garam empedu menetralisir keasaman isi usus di daerah tersebut dan menghasilkan keadaan yang alkalis. Tiga macam enzim pencernaan dikeluarkan ke dalam getah pankreas. Salah satu diantaranya adalah amilase yang memecah pati kedalam disakharida dan gula-gula kompleks. Apabila makanan melalui usus kecil maka sukrase dan enzim-enzim yang memecah gula lainnya yang dikeluarkan di daerah ini selanjutnya menghidrolisir atau mencerna senyawa-senyawa gula ke dalam gula-gula sederhana, terutama glukosa. Gula-gula sederhana adalah hasil akhir dari pencernaan karbohidrat.
Pati dan gula mudah dicerna oleh unggas sedangkan pentosan dan serat kasar sulit dicerna. Saluran pencernaan pada unggas adalah sedemikian pendeknya dan perjalanan makanan yang melalui saluran tersebut begitu cepatnya sehingga jasad renik mempunyai waktu sedikit untuk mengerjakan karbohidrat yang kompleks.
Pencernaan Lemak
Garam-garam empedu hati mengemulsikan lemak dalam lekukan duodenal. Lemak berbentuk emulsi tersebut kemudian dipecah ke dalam asam lemak dan giserol oleh enzim lipase, suatu hasil getah pankreas. Zat-zat tersebut merupakan hasil akhir pencernaan lemak.
Pencernaan Protein
Pada waktu bahan makanan dihaluskan dan dicampur di dalam empedal, campuran pepsin hidrokhlorik memecah sebagian protein ke dalam bagian-bagian yang lebih sederhana seperti proteosa dan pepton. Pada saat lemak dan karbohidrat dicerna dalam lekukan duodenal maka tripsin getah pankreas memecah sebagian proteosa dan pepton ke dalam hasil-hasil yang lebih sederhana, yaitu asam-asam amino. Erepsin yang dikeluarkan ke dalam usus halus melengkapi pencernaan hasil pemecahan protein ke dalam asam-asam amino. Zat-zat tersebut merupakan hasil akhir pencernaan protein.
Pencernaan Zat-zat Mineral dan Vitamin
Zat-zat mineral dalam saluran pencernaan dilarutkan, bukan dicerna. Sebagian besar zat mineral tersebut berubah dari bentuk padat ke bentuk cair di dalam empedal. Kulit kerang dan grit misalnya dilarutkan di bagian tersebut.
Pencernaan dan metabolisme vitamin dalam tubuh belum banyak dapat diketahui. Karoten, "prekursor" vitamin A, dirubah ke dalam vitamin A dalam tubuhnya dapat membantu vitamin C dari bagian-bagian makanan yang ditelan, Kholesterol dalam tubuh dirubah ke dalam vitamin D karena penyinaran sinar matahari atau sinar ultraviolet.
Penyerapan dan Assimilasi
Zat-zat makanan yang dicerna masuk melalui dinding-dinding usus ke dalam peredaran darah. Sebagian besar penyarapan sangat dipertinggi dengan adanya villi yang tidak terhitung jumlahnya.
Zat-zat makanan yang tercerna dalam bentuk gula sederhana, asam-asam amino dan zat-zat mineral yang larut, masuk melalui permukaan dinding usus kedalam kapiler-kapiler darah. Cara bagaimana zat-zat tersebut masuk melalui dinding usus belum banyak diketahui.
Lemak yang dicerna masuk melalui dinding usus ke dalam cairan yang menyerupai susu sistema limfatik. Di sini zat-zat tersebut membentuk lemak netral. Lemak dalam limfa lebih banyak merupakan lemak tubuh daripada sebagai lemak yang diperoleh dari bahan makanan. Lemak bergerak bersama-sama limfa dan memasuki aliran darah vena dekat jantung.
Pengangkutan Zat-zat Makanan
Zat-zat makanan yang telah dicerna setelah masuk ke peredaran darah melalui kapiler-kapiler dalam dinding usus dikumpulkan di dalam vena porta. Vena porta tersebut mengangkut darah dan zat-zat makanan yang telah diserap ke hati dalam perjalanannya ke jantung.
Setelah makanan yang dicerna masuk melalui kapiler-kapiler hati, sebagian besar glukosa dirubah kedalam glikogen untuk disimpan di dalam hati dan otot. Sebagian asam-asam amini dan hasil-hasil zat yang mengandung nitrogen dan metabolisme jaringan mengalami deaminasi pada waktu zat-zat tersebut melalui hati. Bagian-bagian karbohidrat dapat digunakan untuk panas dan kegunaan-kegunaan energi dan bagian zat yang mengandung nitrogen diangkut ke ginjal untuk disingkirkan. Hati memindahkan pula sebagian lemak dan aliran darah untuk disimpan. Hal tersebut dapat dilihat pada hati yang berwarna pucat kekuning-kuningan dari ayam yang gemuk dan anak ayam yang baru menetas. Kotoran-kotoran yang terserap dan saluran pencernaan ke dalam peredaran darah diambil oleh sel-sel hati pada waktu darah masuk melalui kapiler-kapiler hati. Bila racun ikut terserap maka konsentrasi racun yang tinggi tersebut biasanya terdapat pada hati.
Darah yang membawa zat-zat makanan yang telah dicerna meninggalkan hati dengan perantaraan vena hepatika menuju ke jantung. Darah tersebut melanjutkan perjalanannya dari jantung ke paru-paru untuk melepaskan karbondioksida dan air dan mengambil oksigen. Darah kembali dari paru-paru ke jantung untuk kemudian dialirkan melalui arteri-arteri ke seluruh jaringan tubuh.
Zat-zat makanan yang telah dicerna mengalir ke kapiler-kapiler ke limfa yang membasahi sel-sel jaringan. Limfa berguna sebagai medium pertukaran antara kapiler-kapiler dan sel-sel jaringan. Limfa tersebut membawa makanan yang telah dicerna ke sel dan mengangkut sisa-sisa makanan dari sel.
Unggas mengambil makanannya dengan paruh dan kemudian terus ditelan. Makanan tersebut disimpan dalam tembolok untuk dilunakkan dan dicampur dengan getah pencernaan proventrikulus dan kemudian digiling dalam empedal. Tidak ada enzim pencernaan yang dikeluarkan oleh empedal unggas. Fungsi utama alat tersebut adalah untuk memperkecil ukuran partikel-partikel makanan.
Dari empedal makanan yang bergerak melalui lekukan usus yang disebut duodenum, yang secara anatomis sejajar dengan pankreas. Pankreas tersebut mempunyai fungsi penting dalam pencernaan unggas seperti hanya pada spesies-spesies lainnya. Alat tersebut menghasilkan getah pankreas dalam jumlah banyak yang mengandung enzim-enzim amilolitik, lipolitik dan proteolitik. Enzim-enzim tersebut berturut-turut menghidrolisa pati, lemak, proteosa dan pepton. Empedu hati yang mengandung amilase, memasuki pula duodenum.
Bahan makanan bergerak melalui usus halus yang dindingnya mengeluarkan getah usus. Getah usus tersebut mengandung erepsin dan beberapa enzim yang memecah gula. Erepsin menyempurnakan pencernaan protein, dan menghasilkan asam-asam amino, enzim yang memecah gula mengubah disakharida ke dalam gula-gula sederhana (monosakharida) yang kemudian dapat diasimilasi tubuh. Penyerapan dilaksanakan melalui villi usus halus.
Unggas tidak mengeluarkan urine cair. Urine pada unggas mengalir kedalam kloaka dan dikeluarkan bersama-sama feses. Warna putih yang terdapat dalam kotoran ayam sebagian besar adalah asam urat, sedangkan nitrogen urine mammalia kebanyakan adalah urine. Saluran pencernaan yang relatif pendek pada unggas digambarkan pada proses pencernaan yang cepat (lebih kurang empat jam).
Pencernaan Karbohidrat
Setelah makanan yang dihaluskan melalui empedal ke lengkukan duodenal maka getah pankreatik dikeluarkan dari pankreas ke dalam lekukan duodenal. Pada waktu yang bersamaan, garam empedu alkalis yang dihasilkan dalam hati dan disimpan dalam kantong empedu dikeluarkan pula kedalam lekukan duodenal. Garam empedu menetralisir keasaman isi usus di daerah tersebut dan menghasilkan keadaan yang alkalis. Tiga macam enzim pencernaan dikeluarkan ke dalam getah pankreas. Salah satu diantaranya adalah amilase yang memecah pati kedalam disakharida dan gula-gula kompleks. Apabila makanan melalui usus kecil maka sukrase dan enzim-enzim yang memecah gula lainnya yang dikeluarkan di daerah ini selanjutnya menghidrolisir atau mencerna senyawa-senyawa gula ke dalam gula-gula sederhana, terutama glukosa. Gula-gula sederhana adalah hasil akhir dari pencernaan karbohidrat.
Pati dan gula mudah dicerna oleh unggas sedangkan pentosan dan serat kasar sulit dicerna. Saluran pencernaan pada unggas adalah sedemikian pendeknya dan perjalanan makanan yang melalui saluran tersebut begitu cepatnya sehingga jasad renik mempunyai waktu sedikit untuk mengerjakan karbohidrat yang kompleks.
Pencernaan Lemak
Garam-garam empedu hati mengemulsikan lemak dalam lekukan duodenal. Lemak berbentuk emulsi tersebut kemudian dipecah ke dalam asam lemak dan giserol oleh enzim lipase, suatu hasil getah pankreas. Zat-zat tersebut merupakan hasil akhir pencernaan lemak.
Pencernaan Protein
Pada waktu bahan makanan dihaluskan dan dicampur di dalam empedal, campuran pepsin hidrokhlorik memecah sebagian protein ke dalam bagian-bagian yang lebih sederhana seperti proteosa dan pepton. Pada saat lemak dan karbohidrat dicerna dalam lekukan duodenal maka tripsin getah pankreas memecah sebagian proteosa dan pepton ke dalam hasil-hasil yang lebih sederhana, yaitu asam-asam amino. Erepsin yang dikeluarkan ke dalam usus halus melengkapi pencernaan hasil pemecahan protein ke dalam asam-asam amino. Zat-zat tersebut merupakan hasil akhir pencernaan protein.
Pencernaan Zat-zat Mineral dan Vitamin
Zat-zat mineral dalam saluran pencernaan dilarutkan, bukan dicerna. Sebagian besar zat mineral tersebut berubah dari bentuk padat ke bentuk cair di dalam empedal. Kulit kerang dan grit misalnya dilarutkan di bagian tersebut.
Pencernaan dan metabolisme vitamin dalam tubuh belum banyak dapat diketahui. Karoten, "prekursor" vitamin A, dirubah ke dalam vitamin A dalam tubuhnya dapat membantu vitamin C dari bagian-bagian makanan yang ditelan, Kholesterol dalam tubuh dirubah ke dalam vitamin D karena penyinaran sinar matahari atau sinar ultraviolet.
Penyerapan dan Assimilasi
Zat-zat makanan yang dicerna masuk melalui dinding-dinding usus ke dalam peredaran darah. Sebagian besar penyarapan sangat dipertinggi dengan adanya villi yang tidak terhitung jumlahnya.
Zat-zat makanan yang tercerna dalam bentuk gula sederhana, asam-asam amino dan zat-zat mineral yang larut, masuk melalui permukaan dinding usus kedalam kapiler-kapiler darah. Cara bagaimana zat-zat tersebut masuk melalui dinding usus belum banyak diketahui.
Lemak yang dicerna masuk melalui dinding usus ke dalam cairan yang menyerupai susu sistema limfatik. Di sini zat-zat tersebut membentuk lemak netral. Lemak dalam limfa lebih banyak merupakan lemak tubuh daripada sebagai lemak yang diperoleh dari bahan makanan. Lemak bergerak bersama-sama limfa dan memasuki aliran darah vena dekat jantung.
Pengangkutan Zat-zat Makanan
Zat-zat makanan yang telah dicerna setelah masuk ke peredaran darah melalui kapiler-kapiler dalam dinding usus dikumpulkan di dalam vena porta. Vena porta tersebut mengangkut darah dan zat-zat makanan yang telah diserap ke hati dalam perjalanannya ke jantung.
Setelah makanan yang dicerna masuk melalui kapiler-kapiler hati, sebagian besar glukosa dirubah kedalam glikogen untuk disimpan di dalam hati dan otot. Sebagian asam-asam amini dan hasil-hasil zat yang mengandung nitrogen dan metabolisme jaringan mengalami deaminasi pada waktu zat-zat tersebut melalui hati. Bagian-bagian karbohidrat dapat digunakan untuk panas dan kegunaan-kegunaan energi dan bagian zat yang mengandung nitrogen diangkut ke ginjal untuk disingkirkan. Hati memindahkan pula sebagian lemak dan aliran darah untuk disimpan. Hal tersebut dapat dilihat pada hati yang berwarna pucat kekuning-kuningan dari ayam yang gemuk dan anak ayam yang baru menetas. Kotoran-kotoran yang terserap dan saluran pencernaan ke dalam peredaran darah diambil oleh sel-sel hati pada waktu darah masuk melalui kapiler-kapiler hati. Bila racun ikut terserap maka konsentrasi racun yang tinggi tersebut biasanya terdapat pada hati.
Darah yang membawa zat-zat makanan yang telah dicerna meninggalkan hati dengan perantaraan vena hepatika menuju ke jantung. Darah tersebut melanjutkan perjalanannya dari jantung ke paru-paru untuk melepaskan karbondioksida dan air dan mengambil oksigen. Darah kembali dari paru-paru ke jantung untuk kemudian dialirkan melalui arteri-arteri ke seluruh jaringan tubuh.
Zat-zat makanan yang telah dicerna mengalir ke kapiler-kapiler ke limfa yang membasahi sel-sel jaringan. Limfa berguna sebagai medium pertukaran antara kapiler-kapiler dan sel-sel jaringan. Limfa tersebut membawa makanan yang telah dicerna ke sel dan mengangkut sisa-sisa makanan dari sel.
Mencegah Lebih Baik daripada Mengobati
Dalam suatu peternakan ayam, dapat terjadi banyak sekali variasi penyakit yang sudah sangat dipahami atau familiar bagi peternak terutama peternak skala menengah dan besar.
Berbicara keberhasilan mengenai peternakan (tanpa tergantung skala bisnisnya) oleh seorang peternak ditentukan dari pengetahuan dan pemahaman dengan pengenalan sumber hambatan dan ancaman dari penyakit yang mungkin dapat menjadikan ledakan penyakit menular dan berakibat sangat merugikan. Oleh sebab itu, pengamanan dan menjauhkan ternak ayam dari sumber wabah dan hambatan potensial tersebut menjadi prioritas dan perhatian khusus.
Dimulai dengan pemilihan indukan yang unggul, pengelolaan yang baik, sanitasi, peningkatan daya tahan ayam dengan vaksinasi dan usaha menjauhkan ternak ayam dari sumber penyakit adalah kunci sukses dalam beternak ayam.
Secara prinsip penyakit ayam dapat disebabkan oleh 3 hal yaitu :
Penyakit yang menular dan disebabkan oleh bakteri, protozoa, virus, parasit dan jamur.
Penyakit yang disebabkan oleh faktor atau sebab lainnya.
Penyakit yang disebabkan oleh defisiensi atau kekurangan zat-zat makanan yang diperlukan dalam perkembangan dan ketahanan tubuh ayam yang lebih disebabkan karena ketergantungan ayam pada kualitas makanan yang diberikan oleh peternak
Berikut ini kami mencoba memberikan ringkasan beberapa penyakit yang sering dijumpai pada ayam, termasuk penyakit yang baru-baru ini sangat meresahkan para peternak yaitu Avian Influenza atau yang lebih dikenal dengan Flu Burung.
Berbicara keberhasilan mengenai peternakan (tanpa tergantung skala bisnisnya) oleh seorang peternak ditentukan dari pengetahuan dan pemahaman dengan pengenalan sumber hambatan dan ancaman dari penyakit yang mungkin dapat menjadikan ledakan penyakit menular dan berakibat sangat merugikan. Oleh sebab itu, pengamanan dan menjauhkan ternak ayam dari sumber wabah dan hambatan potensial tersebut menjadi prioritas dan perhatian khusus.
Dimulai dengan pemilihan indukan yang unggul, pengelolaan yang baik, sanitasi, peningkatan daya tahan ayam dengan vaksinasi dan usaha menjauhkan ternak ayam dari sumber penyakit adalah kunci sukses dalam beternak ayam.
Secara prinsip penyakit ayam dapat disebabkan oleh 3 hal yaitu :
Penyakit yang menular dan disebabkan oleh bakteri, protozoa, virus, parasit dan jamur.
Penyakit yang disebabkan oleh faktor atau sebab lainnya.
Penyakit yang disebabkan oleh defisiensi atau kekurangan zat-zat makanan yang diperlukan dalam perkembangan dan ketahanan tubuh ayam yang lebih disebabkan karena ketergantungan ayam pada kualitas makanan yang diberikan oleh peternak
Berikut ini kami mencoba memberikan ringkasan beberapa penyakit yang sering dijumpai pada ayam, termasuk penyakit yang baru-baru ini sangat meresahkan para peternak yaitu Avian Influenza atau yang lebih dikenal dengan Flu Burung.
Fungsi Karbohidrat dalam Ransum Unggas
Karbohidrat adalah zat organik utama yang terdapat dalam tumbuh-tumbuhan dan biasanya mewakili 50 sampai 75 persen dari jumlah bahan kering dalam bahan makanan ternak. Karbohidrat sebagian besar terdapat dalam biji, buah dan akar tumbuhan. Zat tersebut terbentuk oleh proses fotosintesis, yang melibatkan kegiatan sinar matahari terhadap hijauan daun. Hijauan daun merupakan zat fotosintetik aktif pada tumbuh-tumbuhan. Zat tersebut merupakan molekul yang rumit dengan suatu struktur yang serupa dengan struktur hemoglobin, yang terdapat dalam darah hewan. Hijauan daun mengandung magnesium : hemoglobin mengandung besi. Lebih terperinci lagi, karbohidrat dibentuk dari air (H2O) berasal dari tanah, karbondioksida (CO2) berasal dari udara dan energi berasal dari matahari. Suatu reaksi kimiawi sederhana yang memperlihatkan suatu karbohidrat (glukosa) disintesis oleh fotosintesis dalam tumbuh-tumbuhan adalah sebagai berikut :
6CO2 + 6H2O + 673 cal —-> C6H12O6 + 6 O2
Monosakharida adalah gula-gula sederhana yang mengandung lima atau enam atom karbon dalam molekulnya. Zat tersebut larut dalam air. Monosakharida yang mengandung enam karbon mempunyai formula molekul C6H12O6. Termasuk di dalamnya glukosa (juga dikenal sebagai dekstrosa) terdapat pada tubuhan, buah masak, madu, jagung manis, dan sebagainya. Pada hewan zat tersebut terutama terdapat dalam darah yang pada konsentrasi tertentu adalah sangat vital untuk kehidupan. Orang sakit dapat diberi makan dengan menginfus glukosa langsung ke dalam peredaran darah.
Disakharida adalah karbohidrat yang mengandung dua molekul gula-gula sederhana. Mempunyai formula umum C12H22O11. Karenanya zat tersebut mewakili dua molekul gula sederhana minus air (dua atom hidrogen dan satu atom oksigen). Disakharida yang sangat penting adalah sukrosa, maltosa dan laktosa.
Sukrosa ditemukan dalam ubi manis atau gula tebu dan tiap molekul mengandung satu molekul glukosa (dekstrosa) dan satu molekul fruktosa (levulosa). Sukrosa rasanya sangat manis dan lazimnya digunakan untuk membuat manis bahan makanan, jadi merupakan gula yang digunakan sehari-hari dan digunakan untuk masak. Sukrosa terdapat pula dalam buah-buahan masak, dan getah pohon serta tersebar luas di alam.
Maltosa ditemukan dalam biji yang sedang tumbuh dan mengandung dua molekul glikosa. Gula tersebut manisnya kurang lebih sepertiga manisnya sukrosa.
Laktosa adalah gula susu dan hanya terdapat dalam susu (atau hasil-hasil dari susu). Zat tersebut terdiri dari satu molekul glukosa dan satu molekul galaktosa. Laktosa tidak dapat digunakan oleh ayam karena sekresi pencernaan ayam yang tidak mengandung enzim laktosa yang diperlukan untuk mencerna laktosa.
Trisakharida terdiri dari tiga molekul monosakharida yaitu galaktosa, fruktosa dan glukosa. Raffinosa adalah suatu trisakharida yang terdapat dalam gula biet dan biji kapas.
Polisakharida mempunyai formula kimiawi umum (C6H10O5)n. Berarti bahwa zat tersebut mengandung banyak molekul gula-gula sederhana. Kedua golongan utama dari polisakharida adalah pati dan selulosa, meskipun masih ada golongan-golongan lebih kecil lainnya yang kurang penting. Selulosa merupakan kelompok organik terbanyak di alam; hampir 50 persen zat organik dalam tumbuh-tumbuhan diduga terdiri dari selulosa. Meskipun selulosa dan pati kedua-duanya adalah polisakharida yang terdiri dari unit-unit glikogen, ayam hanya mempunyai enzim yang dapat menghidrolisa pati. Karenanya selulosa tidak dapat dicerna sama sekali. Selulosa terutama terdapat dalam dinding sel dan bagian tumbuh-tumbuhan yang berkayu. Hewan ruminansia (sapi, domba dan kambing) yang mempunyai mikroorganisme selulolitik dalam perut besarnya dapat menyerap selulosa dan membuat hasil-hasil akhirnya (asam lemak atsiri) berguna bagi hewan itu sendiri. Dalam proses pencernaan tersebut banyak energi telah hilang sehingga selulosa bagi hewan ruminansia mempunyai nilai gizi yang jauh lebih rendah dibandingkan dengan pati yang mudah dicerna. Pada ayam, selulosa lebih banyak digunakan untuk membatasi penggunaan zat-zat makanan, terutama dalam pertumbuhan ayam dara. Dalam penyusunan ransum, selulosa diistilahkan dengan nama "serat kasar". Pati merupakan polisakharida terpenting dalam tumbuh-tumbuhan, karenanya merupakan zat paling penting dalam ransum ternak. Pada sebagian besar tumbuh-tumbuhan, pati disimpan didalam buah, biji dan akar. Bila pati dirombak, maka akan menghasilkan banyak molekul gukosa. Glikogen atau "pati hewan" terdapat dalam jumlah sedikit dalam hati, otot dan jaringan-jaringan lain dari tubuh hewan. Glokogen mengandung banyak molekul glukosa.
Fungsi Utama Karbohidrat dalam Ransum
Fungsi utama karbohidrat dalam ransum ayam adalah untuk memenuhi kebutuhan energi dan panas bagi semua proses-proses tubuh. Ayam adalah hewan yang aktif dalam pergerakannya dan mempunyai suhu badan tinggi (40,5 - 41,5oC). Karena suhu tersebut biasanya adalah lebih tinggi daripada udara sekelilingnya, maka tubuh ayam secara terus-menerus kehilangan panas. Oleh sebab itu ayam memerlukan bahan makanan yang mengandung energi dalam jumlah besar untuk mengganti panas yang hilang tersebut. Jagung, beras, sorghum, gandum dan hasil ikutan penggilingan, merupakan bahan makanan utama yang mengandung energi.
Bila ayam dalam ransumnya memperoleh karbohidrat terlalu banyak maka kelebihan tersebut oleh tubuh akan dirubah ke dalam lemak yang akan disimpan sebagai sumber energi potensial. Serat kasar (termasuk selulosa) merupakan sumber panas dan energi bila dicerna. Zat tersebut mencegah pula menggumpalnya makanan dalam lambung dan usus hewan dengan cara memberi pengaruh pencahar dan mempertahankan tenus otot yang wajar dalam saluran pencernaan.
Nilai Bermacam-macam Karbohidrat
Karbohidrat dalam bahan makanan berbeda besar sekali dalam pencernaan dan nilai gizi. Pati dan gula mudah dicerna dan mempunyai nilai gizi tinggi. Selulosa dan karbohidrat kompleks lainnya dicerna hanya melalui kegiatan bakteri yang terdapat di dalam perut besar hewan ruminansia, di dalam usus buntu dan usus besar kuda dan dalam jumlah yang lebih sedikit di dalam usus besar hewan lainnya. Hal ini berarti bahwa hewan ruminansia, seperti sapi dan domba dan juga kuda sanggup mencerna dan menggunakan serat kasar bahan pakan secara baik meskipun zat tersebut dibandingkan dengan pati mempunyai nilai yang lebih rendah bagi hewan-hewan tersebut. Ayam dan babi dapat sedikit menggunakan serat kasar.
Dalam proses pencernaan, maka pati dirubah ke dalam glukosa. Gula-gula campuran juga hampir seluruhnya dirubah ke dalam glukosa atau gula-gula sederhana lainnya dan kemudian diserap ke dalam darah. Pada pencernaan serat kasar dengan pertolongan bakteri, maka hasil utama yang dapat digunakan adalah asam-asam organik, sebagian besar asam asetat. Asam-asam organik tersebut kemudian diserap dan digunakan dalam tubuh sama halnya seperti glukosa.
Karena karbohidrat merupakan lebih kurang tiga-perempat bagian dari bahan kering sebagian besar tumbuh-tunbuhan, maka zat tersebut merupakan sumber utama energi dan panas bagi ayam. Sebagian besar energi guna pekerjaan otot jadinya berasal dari karbohidrat dalam bahan pakan. Telah diketahui pula bahwa karbohidrat merupakan sumber utama lemak tubuh dan merupakan sumber lemak penting dalam susu.
6CO2 + 6H2O + 673 cal —-> C6H12O6 + 6 O2
Monosakharida adalah gula-gula sederhana yang mengandung lima atau enam atom karbon dalam molekulnya. Zat tersebut larut dalam air. Monosakharida yang mengandung enam karbon mempunyai formula molekul C6H12O6. Termasuk di dalamnya glukosa (juga dikenal sebagai dekstrosa) terdapat pada tubuhan, buah masak, madu, jagung manis, dan sebagainya. Pada hewan zat tersebut terutama terdapat dalam darah yang pada konsentrasi tertentu adalah sangat vital untuk kehidupan. Orang sakit dapat diberi makan dengan menginfus glukosa langsung ke dalam peredaran darah.
Disakharida adalah karbohidrat yang mengandung dua molekul gula-gula sederhana. Mempunyai formula umum C12H22O11. Karenanya zat tersebut mewakili dua molekul gula sederhana minus air (dua atom hidrogen dan satu atom oksigen). Disakharida yang sangat penting adalah sukrosa, maltosa dan laktosa.
Sukrosa ditemukan dalam ubi manis atau gula tebu dan tiap molekul mengandung satu molekul glukosa (dekstrosa) dan satu molekul fruktosa (levulosa). Sukrosa rasanya sangat manis dan lazimnya digunakan untuk membuat manis bahan makanan, jadi merupakan gula yang digunakan sehari-hari dan digunakan untuk masak. Sukrosa terdapat pula dalam buah-buahan masak, dan getah pohon serta tersebar luas di alam.
Maltosa ditemukan dalam biji yang sedang tumbuh dan mengandung dua molekul glikosa. Gula tersebut manisnya kurang lebih sepertiga manisnya sukrosa.
Laktosa adalah gula susu dan hanya terdapat dalam susu (atau hasil-hasil dari susu). Zat tersebut terdiri dari satu molekul glukosa dan satu molekul galaktosa. Laktosa tidak dapat digunakan oleh ayam karena sekresi pencernaan ayam yang tidak mengandung enzim laktosa yang diperlukan untuk mencerna laktosa.
Trisakharida terdiri dari tiga molekul monosakharida yaitu galaktosa, fruktosa dan glukosa. Raffinosa adalah suatu trisakharida yang terdapat dalam gula biet dan biji kapas.
Polisakharida mempunyai formula kimiawi umum (C6H10O5)n. Berarti bahwa zat tersebut mengandung banyak molekul gula-gula sederhana. Kedua golongan utama dari polisakharida adalah pati dan selulosa, meskipun masih ada golongan-golongan lebih kecil lainnya yang kurang penting. Selulosa merupakan kelompok organik terbanyak di alam; hampir 50 persen zat organik dalam tumbuh-tumbuhan diduga terdiri dari selulosa. Meskipun selulosa dan pati kedua-duanya adalah polisakharida yang terdiri dari unit-unit glikogen, ayam hanya mempunyai enzim yang dapat menghidrolisa pati. Karenanya selulosa tidak dapat dicerna sama sekali. Selulosa terutama terdapat dalam dinding sel dan bagian tumbuh-tumbuhan yang berkayu. Hewan ruminansia (sapi, domba dan kambing) yang mempunyai mikroorganisme selulolitik dalam perut besarnya dapat menyerap selulosa dan membuat hasil-hasil akhirnya (asam lemak atsiri) berguna bagi hewan itu sendiri. Dalam proses pencernaan tersebut banyak energi telah hilang sehingga selulosa bagi hewan ruminansia mempunyai nilai gizi yang jauh lebih rendah dibandingkan dengan pati yang mudah dicerna. Pada ayam, selulosa lebih banyak digunakan untuk membatasi penggunaan zat-zat makanan, terutama dalam pertumbuhan ayam dara. Dalam penyusunan ransum, selulosa diistilahkan dengan nama "serat kasar". Pati merupakan polisakharida terpenting dalam tumbuh-tumbuhan, karenanya merupakan zat paling penting dalam ransum ternak. Pada sebagian besar tumbuh-tumbuhan, pati disimpan didalam buah, biji dan akar. Bila pati dirombak, maka akan menghasilkan banyak molekul gukosa. Glikogen atau "pati hewan" terdapat dalam jumlah sedikit dalam hati, otot dan jaringan-jaringan lain dari tubuh hewan. Glokogen mengandung banyak molekul glukosa.
Fungsi Utama Karbohidrat dalam Ransum
Fungsi utama karbohidrat dalam ransum ayam adalah untuk memenuhi kebutuhan energi dan panas bagi semua proses-proses tubuh. Ayam adalah hewan yang aktif dalam pergerakannya dan mempunyai suhu badan tinggi (40,5 - 41,5oC). Karena suhu tersebut biasanya adalah lebih tinggi daripada udara sekelilingnya, maka tubuh ayam secara terus-menerus kehilangan panas. Oleh sebab itu ayam memerlukan bahan makanan yang mengandung energi dalam jumlah besar untuk mengganti panas yang hilang tersebut. Jagung, beras, sorghum, gandum dan hasil ikutan penggilingan, merupakan bahan makanan utama yang mengandung energi.
Bila ayam dalam ransumnya memperoleh karbohidrat terlalu banyak maka kelebihan tersebut oleh tubuh akan dirubah ke dalam lemak yang akan disimpan sebagai sumber energi potensial. Serat kasar (termasuk selulosa) merupakan sumber panas dan energi bila dicerna. Zat tersebut mencegah pula menggumpalnya makanan dalam lambung dan usus hewan dengan cara memberi pengaruh pencahar dan mempertahankan tenus otot yang wajar dalam saluran pencernaan.
Nilai Bermacam-macam Karbohidrat
Karbohidrat dalam bahan makanan berbeda besar sekali dalam pencernaan dan nilai gizi. Pati dan gula mudah dicerna dan mempunyai nilai gizi tinggi. Selulosa dan karbohidrat kompleks lainnya dicerna hanya melalui kegiatan bakteri yang terdapat di dalam perut besar hewan ruminansia, di dalam usus buntu dan usus besar kuda dan dalam jumlah yang lebih sedikit di dalam usus besar hewan lainnya. Hal ini berarti bahwa hewan ruminansia, seperti sapi dan domba dan juga kuda sanggup mencerna dan menggunakan serat kasar bahan pakan secara baik meskipun zat tersebut dibandingkan dengan pati mempunyai nilai yang lebih rendah bagi hewan-hewan tersebut. Ayam dan babi dapat sedikit menggunakan serat kasar.
Dalam proses pencernaan, maka pati dirubah ke dalam glukosa. Gula-gula campuran juga hampir seluruhnya dirubah ke dalam glukosa atau gula-gula sederhana lainnya dan kemudian diserap ke dalam darah. Pada pencernaan serat kasar dengan pertolongan bakteri, maka hasil utama yang dapat digunakan adalah asam-asam organik, sebagian besar asam asetat. Asam-asam organik tersebut kemudian diserap dan digunakan dalam tubuh sama halnya seperti glukosa.
Karena karbohidrat merupakan lebih kurang tiga-perempat bagian dari bahan kering sebagian besar tumbuh-tunbuhan, maka zat tersebut merupakan sumber utama energi dan panas bagi ayam. Sebagian besar energi guna pekerjaan otot jadinya berasal dari karbohidrat dalam bahan pakan. Telah diketahui pula bahwa karbohidrat merupakan sumber utama lemak tubuh dan merupakan sumber lemak penting dalam susu.
Manfaat Enzym Bagi Ayam
Januari 31, 2008 oleh ardhiborneogemilang
I. MANFAAT ENZYM BAGI AYAM
Ayam petelur merupakan jenis ternak unggas sebagai penghasil telur terpenting di Indonesia. Harga pakan yang sering melonjak secara tiba-tiba dan harga telur yang fluktuatif sangat mempengaruhi minat peternak dalam berproduksi. Untuk meningkatkan keuntungan peternak, perlu upaya untuk meningkatkan efisiensi usaha. Dalam usaha ayam, baik ayam ras maupun buras secara intensif, biaya pakan meliputi 65-70% dari biaya operasional, maka untuk meningkatkan efisiensi usaha, faktor pakan tidak bisa diabaikan, karena merupakan komponen biaya terbesar. Dalam usaha peternakan, efisiensi usaha dapat dilihat antara lain dari angka Feed Convertion Ratio (FCR). FCR merupakan perbandingan antara banyaknya pakan yang dikonsumsi dengan tingkat produksi (telur) yang dicapai. Untuk menekan angka FCR, dapat dilakukan dengan menekan konsumsi pakan, atau dengan meningkatkan angka produksi tanpa atau dengan sedikit peningkatan konsumsi pakan.
Penggunaan enzym dalam ransum merupakan alternatif care yang diharapkan dapat meningkatkan produksi ternak dan menekan nilai FCR. Enzym merupakan bahan organik yang dapat meningkatkan daya cerna pakan sehingga mampu meningkatkan produksi ternak.Penggunaan enzym dalam ransum terbukti dapat meningkatkan produksi telur, baik pada ayam ras maupun ayam buras, di pihak lain konsumsi pakan justru berkurang.
II. PENGGUNAAN PROMIX UNTUK AYAM PETELUR
Keunggulan PROBIOTIC PREMIX HERBAL (PROMIX) adalah menghasilkan enzym yang dapat mengurai selulosa, hemiselulosa, pectin dan lignin ► dilakukan oleh Biffidobacterium bifidum, Biffidobacterium logum dan Lactobacillus acidophilus, memecah serat kasar, mempercepat dekomposisi bahan organik sehingga menjadi karbohidrat yang siap cerna meningkatkan absorbsi jonjot usus sehingga meningkatkan penyerapan pakan (meningkatkan TDN » Total Digetible Nutrient) dan akhirnya menurunkan FCR (Feed Convertion Ratio).
Penggunaan PROMIX diberikan lewat pakan.
· Agar pemberian efektif pada ayam petelur lebih efektif hendaknya dilakukan setelah ayam melampaui puncak produksi. Pada ayam ras, misalnya dilakukan setelah produksi telur di bawah 80% dan pada ayam buras pada tingkat produksi di bawah 30%.
· Level penggunaannya yang efektif sebesar 0,1% dari jumlah ransum (1 kg untuk 1.000 kg ransum).
· Mengingat komposisi penggunaan PROMIX yang amat kecil sehingga dalam aplikasinya sulit untuk mencampur dengan ransum yang jumlahnya relatif besar. Agar bisa merata, dianjurkan pencampuran dilakukan secara bertahap.
· Tahap pertama, PROMIX dicampur secara merata dengan pakan sehingga volume campuran mencapai 10-20 kali dari volume PROMIX. Selanjutnya, campuran tersebut dicampur dengan seluruh ransum secara merata.
III. PENGARUHNYA TERHADAP PRODUKSI DAN KONSUMSI PAKAN
· Pemberian PROMIX dimaksudkan untuk meningkatkan efisiensi usaha, karena pemberian enzym akan dapat meningkatkan produksi dan mengurangi konsumsi pakan.
·Hasil kajian menunjukkan bahwa pemberian PROMIX sebesar 0,1% pada ayam ras petelur dapat meningkatkan produksi dari rata-rata 79,8% menjadi 85,2%. Sedangkan
pada ayam buras meningkat dari rata-rata 19,0% menjadi 24,4%.
· Disamping itu, berat telur rata-rata meningkat dari 58,8 gram/butir menjadi
63,1 gram/butir pada ayam ras dan pada ayam buras meningkat dari 40,7
gram/butir menjadi 41,9 gram/butir.
· Selain peningkatan produksi telur juga terjadi penurunan konsumsi pakan.
Pada ayam ras dari 150 gram/ekor/hari menjadi 141 gram/ekor/hari dan
pada ayam buras dari 69 gram/ekor/hari menjadi 64 gram/ekor/hari.
· Dengan terjadinya peningkatan produksi di satu pihak dan penurunan
konsumsi pakan di pihak lain, sehingga pemberian PROMIX akan
meningkatkan keuntungan usaha.
IV. HAL-HAL YANG PERLU DIPERHATIKAN
Dalam menggunakan PROMIX untuk efisiensi pakan dan peningkatan produksi,
agar efektif pada beberapa hal yang harus diperhatikan yaitu:
1. Hindarkan enzym dari sinar matahari langsung karena itu simpanlah
PROMIX di tempat yang teduh (tidak terkena sinar matahari), tempat yang
kering dan lembab.
2. Dalam mencampur dengan pakan harus hati-hati agar benar-benar
merata. Karena itu pencampuran perlu dilakukan secara bertahap.
3. Pada ayam fase bertelur (layer) hendaknya pemberian dilakukan setelah
puncak produksi berlalu. Pada ayam ras, dengan tingkat produksi 80% ke
bawah dan pada ayam buras 30% ke bawah.
Ditulis dalam Manfaat Enzym | yang berkaitan ayam, probiotik, ternak, broiler, herbal, daging, layer, agrobisnis, bisnis, agro, agribisnis, peternakan, chick, enzim, enzym, usaha, peluang, telur, FCR, TDN, kandang, pupuk kandang, protein, karbohidrat, kalsium, nafsu, penyakit, produksi, produktifitas, konsumsi, jamu, ras, buras, mikroba, bakteri, dekomposisi, ransum, pakan | 2 Tanggapan
2 Tanggapan ke “Manfaat Enzym Bagi Ayam”
di/pada Juli 29, 2008 pada 2:35 pm1 ALVIN
PAK SAYA INI PELAJAR,TERUS PENGEN JADI PETERNAK,SAMPAI2 SAYA BELI AYAM PETELUR YTANG SUDAH TUA DI PASAR,SOALNYA MAU BELI YANG MASIH BARU LAHIR GAK PUNYA UANG,SAYA MAU TANYA BAGAI MANA PAKAN AGAR AYAM BISA BERETELUR SETIAP HARI/BANYAK.USAHAKAN PAKAN TIDAK BELI[BUAT SENDIRI] SOALNYA SAYA ORANG GAK PUNYA,BALAS YA PAK PLEASE
di/pada Agustus 1, 2008 pada 7:46 am2 ardhiborneogemilang
Mas Alvin di somehere,
Saya salut pada semangat Anda. Jangan berkecil hati dengan keadaan Anda sekarang. Segala hal di dunia ini bisa saja berubah asal Anda mau dan melakukannya,
Pakan adalah kunci keberhasilan budidaya terutama ayam. Kualitas pakan sangat menentukan, Kualitas yang dimaksud adalah ketersediaan semua unsur yang diperlukan dalam membangun struktur tubuh ayam sampai akhirnya siap untuk berproduksi.
Saya sekedar menjawab secara umum kali ini mengingat keterbatasan waktu saya. InsyaAllah segera saya layangkan jawaban komplit mengenai komposisi lengkap pakan ideal plus sumber bahannya tanpa harus mengeluarkan biaya banyak.
Atau Anda bisa SMS/telp saya di 081351868943.
I. MANFAAT ENZYM BAGI AYAM
Ayam petelur merupakan jenis ternak unggas sebagai penghasil telur terpenting di Indonesia. Harga pakan yang sering melonjak secara tiba-tiba dan harga telur yang fluktuatif sangat mempengaruhi minat peternak dalam berproduksi. Untuk meningkatkan keuntungan peternak, perlu upaya untuk meningkatkan efisiensi usaha. Dalam usaha ayam, baik ayam ras maupun buras secara intensif, biaya pakan meliputi 65-70% dari biaya operasional, maka untuk meningkatkan efisiensi usaha, faktor pakan tidak bisa diabaikan, karena merupakan komponen biaya terbesar. Dalam usaha peternakan, efisiensi usaha dapat dilihat antara lain dari angka Feed Convertion Ratio (FCR). FCR merupakan perbandingan antara banyaknya pakan yang dikonsumsi dengan tingkat produksi (telur) yang dicapai. Untuk menekan angka FCR, dapat dilakukan dengan menekan konsumsi pakan, atau dengan meningkatkan angka produksi tanpa atau dengan sedikit peningkatan konsumsi pakan.
Penggunaan enzym dalam ransum merupakan alternatif care yang diharapkan dapat meningkatkan produksi ternak dan menekan nilai FCR. Enzym merupakan bahan organik yang dapat meningkatkan daya cerna pakan sehingga mampu meningkatkan produksi ternak.Penggunaan enzym dalam ransum terbukti dapat meningkatkan produksi telur, baik pada ayam ras maupun ayam buras, di pihak lain konsumsi pakan justru berkurang.
II. PENGGUNAAN PROMIX UNTUK AYAM PETELUR
Keunggulan PROBIOTIC PREMIX HERBAL (PROMIX) adalah menghasilkan enzym yang dapat mengurai selulosa, hemiselulosa, pectin dan lignin ► dilakukan oleh Biffidobacterium bifidum, Biffidobacterium logum dan Lactobacillus acidophilus, memecah serat kasar, mempercepat dekomposisi bahan organik sehingga menjadi karbohidrat yang siap cerna meningkatkan absorbsi jonjot usus sehingga meningkatkan penyerapan pakan (meningkatkan TDN » Total Digetible Nutrient) dan akhirnya menurunkan FCR (Feed Convertion Ratio).
Penggunaan PROMIX diberikan lewat pakan.
· Agar pemberian efektif pada ayam petelur lebih efektif hendaknya dilakukan setelah ayam melampaui puncak produksi. Pada ayam ras, misalnya dilakukan setelah produksi telur di bawah 80% dan pada ayam buras pada tingkat produksi di bawah 30%.
· Level penggunaannya yang efektif sebesar 0,1% dari jumlah ransum (1 kg untuk 1.000 kg ransum).
· Mengingat komposisi penggunaan PROMIX yang amat kecil sehingga dalam aplikasinya sulit untuk mencampur dengan ransum yang jumlahnya relatif besar. Agar bisa merata, dianjurkan pencampuran dilakukan secara bertahap.
· Tahap pertama, PROMIX dicampur secara merata dengan pakan sehingga volume campuran mencapai 10-20 kali dari volume PROMIX. Selanjutnya, campuran tersebut dicampur dengan seluruh ransum secara merata.
III. PENGARUHNYA TERHADAP PRODUKSI DAN KONSUMSI PAKAN
· Pemberian PROMIX dimaksudkan untuk meningkatkan efisiensi usaha, karena pemberian enzym akan dapat meningkatkan produksi dan mengurangi konsumsi pakan.
·Hasil kajian menunjukkan bahwa pemberian PROMIX sebesar 0,1% pada ayam ras petelur dapat meningkatkan produksi dari rata-rata 79,8% menjadi 85,2%. Sedangkan
pada ayam buras meningkat dari rata-rata 19,0% menjadi 24,4%.
· Disamping itu, berat telur rata-rata meningkat dari 58,8 gram/butir menjadi
63,1 gram/butir pada ayam ras dan pada ayam buras meningkat dari 40,7
gram/butir menjadi 41,9 gram/butir.
· Selain peningkatan produksi telur juga terjadi penurunan konsumsi pakan.
Pada ayam ras dari 150 gram/ekor/hari menjadi 141 gram/ekor/hari dan
pada ayam buras dari 69 gram/ekor/hari menjadi 64 gram/ekor/hari.
· Dengan terjadinya peningkatan produksi di satu pihak dan penurunan
konsumsi pakan di pihak lain, sehingga pemberian PROMIX akan
meningkatkan keuntungan usaha.
IV. HAL-HAL YANG PERLU DIPERHATIKAN
Dalam menggunakan PROMIX untuk efisiensi pakan dan peningkatan produksi,
agar efektif pada beberapa hal yang harus diperhatikan yaitu:
1. Hindarkan enzym dari sinar matahari langsung karena itu simpanlah
PROMIX di tempat yang teduh (tidak terkena sinar matahari), tempat yang
kering dan lembab.
2. Dalam mencampur dengan pakan harus hati-hati agar benar-benar
merata. Karena itu pencampuran perlu dilakukan secara bertahap.
3. Pada ayam fase bertelur (layer) hendaknya pemberian dilakukan setelah
puncak produksi berlalu. Pada ayam ras, dengan tingkat produksi 80% ke
bawah dan pada ayam buras 30% ke bawah.
Ditulis dalam Manfaat Enzym | yang berkaitan ayam, probiotik, ternak, broiler, herbal, daging, layer, agrobisnis, bisnis, agro, agribisnis, peternakan, chick, enzim, enzym, usaha, peluang, telur, FCR, TDN, kandang, pupuk kandang, protein, karbohidrat, kalsium, nafsu, penyakit, produksi, produktifitas, konsumsi, jamu, ras, buras, mikroba, bakteri, dekomposisi, ransum, pakan | 2 Tanggapan
2 Tanggapan ke “Manfaat Enzym Bagi Ayam”
di/pada Juli 29, 2008 pada 2:35 pm1 ALVIN
PAK SAYA INI PELAJAR,TERUS PENGEN JADI PETERNAK,SAMPAI2 SAYA BELI AYAM PETELUR YTANG SUDAH TUA DI PASAR,SOALNYA MAU BELI YANG MASIH BARU LAHIR GAK PUNYA UANG,SAYA MAU TANYA BAGAI MANA PAKAN AGAR AYAM BISA BERETELUR SETIAP HARI/BANYAK.USAHAKAN PAKAN TIDAK BELI[BUAT SENDIRI] SOALNYA SAYA ORANG GAK PUNYA,BALAS YA PAK PLEASE
di/pada Agustus 1, 2008 pada 7:46 am2 ardhiborneogemilang
Mas Alvin di somehere,
Saya salut pada semangat Anda. Jangan berkecil hati dengan keadaan Anda sekarang. Segala hal di dunia ini bisa saja berubah asal Anda mau dan melakukannya,
Pakan adalah kunci keberhasilan budidaya terutama ayam. Kualitas pakan sangat menentukan, Kualitas yang dimaksud adalah ketersediaan semua unsur yang diperlukan dalam membangun struktur tubuh ayam sampai akhirnya siap untuk berproduksi.
Saya sekedar menjawab secara umum kali ini mengingat keterbatasan waktu saya. InsyaAllah segera saya layangkan jawaban komplit mengenai komposisi lengkap pakan ideal plus sumber bahannya tanpa harus mengeluarkan biaya banyak.
Atau Anda bisa SMS/telp saya di 081351868943.
Kamus Poultry
Albumen : Putih telur yang kaya akan protein yang dihasilkan oleh gobelet dalam magnum, di bawah kontrol hormon estrogen.
Appetit calcic spesific : Kalsium pakan yang didepositkan saat pertama kali terjadi vitelogeni dan saat pertama kali terjadi pembentukan kerabang telur.
Barbules : Pembentuk bulu.
Beard : Janggut atau pial ayam.
Breed (bangsa) : Klasifikasi ayam berdasarkan bentuk morfoligi dan besar tubuh yang sama dari setiap kelas, misalnya ayam Brahma.
Breeding farm : Industri pembibitan unggas, yaitu tempat untuk mengembangbiakkan unggas.
Broiler : Ayam penghasil daging yang dipelihara sampai umur 6 - 7 minggu dengan berat 1,5 - 2,0 kg dan konversi pakan 1,9 - 2,25.
Broodines (mengeram) : Usaha ayam untuk mengerami telur setelah bertelur, pada periode tertentu dan dibawah pengaruh hormon prolaktin.
Calbindin, Calcium Binding Protein (CaBP) : Ion kalsium pakan yang terkait dengan protein yang terabsorpsi di jonjot usus halus.
Class : Standar klasifikasi ayam berdasarkan daerah asal-usul geografis yang memberikan variasi perbedaan bentuk dan sifat karakteristik ayam, misalnya ayam Asia, ayam Amerika, dan sebagainya.
Cluth : Jumlah telur dalam setiap seri peneluran.
Comb : Jengger ayam
Coprodeum : Muara tempat keluarnya feses di kloaka ayam.
Creeper : Ayam yang mempunyai bentuk badan normal, tetapi kakinya pendek karena adanya gen C yang heterozigot.
Crest : Bentuk mahkota bulu kepala pada unggas.
Crop : Tembolok ayam tempat menyimpan pakan untuk sementara.
Ditjenak : Singkatan dari Direktorat Jendral Peternakan.
DOC (Day Old Chik) : Anak ayam umur sehari; ada juga yang menamakan “kuri” (=kutuk umur sehari). Selaras dengan istilah tersebut, juga berlaku untuk anak itik (Day Old Duck = DOD), anak puyuh (Day Old Coturnix = DOC), anak angsa (Day Old Geese = DOG).
Dual Purpose : Ayam tipe dwiguna yang mampu menghasilkan telur dan daging sama baiknya.
Efisiensi pakan : Besarnya bagian pakan yang dapat diubah menjadi produk (daging atau telur) yang dinyatakan dalam persen.
|Rumus| Efesiensi pakan broiler = (Kenaikan berat badan (g/ekor/hari) / Konsumsi pakan (g/ekor/hari) ) x 100% || Keterangan : efisiensi pakan semakin besar semakin baik, sedangkan konversi pakan semakin kecil semakin baik.
Ekskreta : Feses yang bercampur dengan urine pada unggas.
Feed Convertion Ratio (FCR) atau konversi pakan : Perbandingan antara jumlah pakan yang dihabiskan dan kenaikan berat badan pada periode waktu dan satuan berat yang sama (untuk ayam broiler). Konversi pakan pada ayam petelur adalah perbandingan jumlah pakan yang dihabiskan dengan produksi telur dikalikan massa telur (rata-rata berat telur).
| Rumus| Konversi pakan untuk ayam broiler = (Konsumsi pakan pada waktu dan berat yang sama / Kenaikan bobot badan pada waktu dan berat yang sama)
| Rumus| Konversi pakan untuk ayam petelur = (Konsumsi pakan pada waktu dan satuan berat sama / (HDA x Bobot telur pada waktu dan satuan berat sama))
Contoh konversi pakan untuk ayam broiler : Apabila berat broiler yang dipelihara sampai umur 6 minggu menghabiskan pakan 2,50 kg, sementara itu kenaikan berat badan (berat badan umur 6 minggu - berat DOC) selama 6 minggu adalah 1,25 kg, maka konversi pakan adalah 2,50 / 1,25 = 2,0
Feed mill : Pabrik pakan ternak.
Feed Intake (FI) atau konsumsi pakan : Jumlah pakan yang dihabiskan oleh ayam atau unggas pada periode waktu tertentu, misalnya konsumsi pakan setiap hari dihitung dengan satuan gram/ekor/hari.
Final stock : Ayam yang khusus dipelihara untuk menghasilkan telur atau daging yang telah melalui berbagai persilangan dan seleksi. Di antara ayam jantan atau betina final stock ini tidak boleh disilangkan karena keturunannya akan menghasilkan produksi 50% dari induknya.
Fondation stock (great grand parents stock) : Jenis ayam yang berasal dari persilangan dan seleksi dari berbagai kelas, bangsa, atau varietas yang dilakukan oleh pembibit dan merupakan bahan (stock) untuk membentuk GPS. Great grand parents ini dihasilkan dari persilangan galur murni (pure line).
Finisher : Periode pemeliharaan ayam broiler dan umur 3 - 7 minggu.
Flock mating : Perkawinan dari seekor ayam jantan dengan sekelompok ayam betina pada setiap flock.
Gain weight : Kenaikan berat badan pada periode waktu tertentu dengan cara mengurangi berat badan ayam pada akhir minggu dengan jumlah ayam dan jumlah hari sehingga diperoleh satuannya dalam gram/ekor/hari.
Grand parents stock (GPS) : Jenis ayam yang khusus dipelihara untuk menghasilkan parents stock (PS).
Gallus varius : Ayam hutan hijau jawa.
Gallus bankiva : Ayam hutan merah.
GAPUSI : Gabungan Penggemar Unggas Indonesia.
Gen dwarf : Gen ayam tipe ringan yang ditemukan Hutt (1949), diberi simbol dw.
Gen normal : Gen ayam tipe berat, diberi simbol DW.
Gizard atau empedal : Bagian saluran pencernaan mekanik unggas untuk melumatkan bolus sebelum diabsorbsi usus besar.
Grower : Periode pemeliharaan ayam petelur pada umur 6 - 12 minggu.
Galur murni (pure line) : Suatu breed atau varietas ayam yang telah mengalami seleksi dan pemurniaan berdasarkan sifat/karakteristik unggul tertentu yang akan digunakan untuk membentuk strain komersial melalui perkawinan atau persilangan.
Hen day average (HDA) : Persentase perbandingan antara jumlah produksi telur dan populasi ayam dalam satu kelompok pada satuan waktu tertentu. Contoh : hari ini jumlah ayam sebanyak 90 ekor dan bertelur 75 butir, berarti HDA = 75/90 x 100% = 83,33 %.
Hen house average (HHA) : Persentase perbandingan antara jumlah produksi telur dan jumlah ayam pada saat pertamakali ayam dimasukkan. Contoh : pada tanggal 1 Januari 1999 pak Bejo membeli ayam siap bertelur 100 ekor. Pada tanggal 10 Juni 1999, ayam dikandang tinggal 90 ekor (10 ekor mati). Produksi telur pada tanggal 10 Juni 1999 adalah 75 butir, sehingga HHA = 75/100 x 100% = 75%.
Hen fever : Ayam yang mempunyai gerakan lambat sehingga seperti ayam sakit, misalnya ayam Cochin.
High stock production : Ayam yang telah terseleksi dan produksi telur ataupun dagingnya tinggi.
Homeotermik : Suhu tubuh ayam yang selalu konstan 40 derajat Celcius - 41 derajat Celcius.
Hybrid commercial stock : Ayam yang telah diseleksi untuk dipasarkan secara komersial.
KINAK PRA : Kawasan Industri Peternakan Rakyat Agribisnis.
KINAK PIR : Kawasan Industri Peternakan Inti Rakyat.
KINAK SUPER : Kawasan Industri Sentra Usaha Peternakan Ekspor.
Karkas Unggas : Hasil pemotongan unggas (ayam) tanpa disertai bagian darah, bulu, kepala, cakar, usus, dan giblet (hati, jantung, dan empedal), tetapi paru-paru termasuk dalam bagian karkas.
Layer : Ayam penghasil telur yang dipelihara sampai umur 75 minggu (berproduksi dari umur 20 - 75 minggu).
Laying squence : Seri peneluran.
Legund : Ayam leher gundul (neck necked) yang membawa gen Na.
Meatness : Sifat dan kualitas daging pada ayam broiler yang terbentuk cukup baik.
Monophylitic origin : Teori asal usul ayam dari satu keturunan Gallus.
Molting : Peristiwa rontoknya bulu secara alamiah dan beraturan. Molting yang dipaksakan, dinamakan force molting atau induce molting, digunakan untuk mengatur produksi, harga telur, meningkatkan produksi, dan kualitas telur.
Ornamental : Ayam yang dipelihara untuk kesenangan.
Oviduk : Saluran reproduksi ayam betina yang terdiri atas infundibulum, magnum, isthmus, uterus dan vagina.
Ovarium : Alat reproduksi ayam betina yang menghasilkan ovum (yolk/kuning telur).
Oviposition : Peristiwa keluarnya telur dari kloaka (lay of point) karena pengaruh hormon oksitosin.
Ovulasi : Peristiwa keluarnya (yolk) dari folikel setelah robeknya pada bagian stigma oleh karena pengaruh luteinizing hormon, kemudian ovum ditangkap oleh mulut infundibulum.
Parent stock (PS) : Jenis ayam yang khusus dipelihara untuk menghasilkan final stock (FS).
Pen mating : Perkawinan dari beberapa betina dengan seekor pejantan, tetapi pejantan digilir pada setiap kandang.
Panting (hiperventilasi termik) : Usaha ayam untuk mengeluarkan panas tubuhnya karena heat loss lebih kecil daripada heat production.
Polyphyletic origin : Teori asal usul ayam berasal dari beberapa persilangan Gallus.
Porphirin : Pigmen yang menyebabkan warna coklat pada kerabang telur.
Poultry / unggas : Nama yang diberikan pada sekelompok hewan kelas Aves yang telah didomestikasi yang mampu memberikan nilai ekonomis dalam bentuk barang atau jasa untuk kesejahteraan manusia serta perkembangbiakannya di bawah pengelolaan manusia.
Poultry science : Ilmu pengetahuan baik prinsip atau praktis tentang unggas serta tentang reproduksi, produksi (budidaya), dan pemasarannya.
Poultry production (produksi ternak unggas) : Usaha menernakkan unggas guna mendapatkan nilai ekonomis yang setinggi-tingginya.
Proctodeum : Muara tempat keluarnya sperma di kloaka.
Pullet : Ayam petelur dara menjelang bertelur (umur 12 - 18 minggu).
Pure breed : Galur murni ayam.
Pterylae : Tempat tumbuhnya bulu pada kulit ayam.
Plumping : Penyerapan air dan mineral saat mulai terbentuknya kerabang tipis yang terjadi di isthmus.
Rate of gain : Laju pertumbuhan dan bobot badan.
Rongga udara (air sac) : kantong udara pada unggas (4 pasang dan satu tunggal) yang membantu proses pernafasan.
SAPRONAK : Sarana Produksi Peternakan, misalnya tempat pakan, egg tray.
Sekum (usus buntu) : Sepasang saluran pencernaan tempat mencerna serat kasar dan absorbsi air.
Squab : anak burung merpati.
Shank : Kaki ayam dari tarsometatarsus sampai jari.
Starter : Periode pemeliharaan ayam umur satu hari sampai umur tiga minggu (pada broiler) atau sampai umur enam minggu (pada ayam petelur).
Sex linkage inheritance : Gen yang terkait pada salah satu kromosom dari seks kromosom sehingga menghasilkan sifat seperti induknya pada anak yang jantan atau fenotif seperti bapaknya terdapat pada anak betinanya.
Strain : Klasifikasi ayam berdasarkan garis keturunan tertentu (breeding) melalui persilangan dari berbagai kelas, bangsa, atau varietas sehingga ayam tersebut mempunyai bentuk, sifat, bangsa, dan tipe produksi tertentu sesuai dengan tujuan produksi, contoh Hy-Line, Golden Commet, dll.
Stud mating : Perkawinan antara seekor ayam jantan dan seekor ayam betina.
Tipe : Standar klasifikasi aya berdasarkan kemampuan ayam menghasilkan produk komersial yang sesuai dengan tujuan pemeliharaan, misalnya ayam tipe petelur, tipe pedaging, dan tipe dwiguna.
Susu tembolok (crop milk) : Gel yang mengandung nutrien berkualitas tinggi, dihasilkan oleh burung merpati yang mengeram sampai menetaskan telur dan meloloh anaknya.
Spermatogenesis : Proses pembentukan sel sperma di tubuli seminiferi (sel Leydig) testis, di bawah kontrol hormon testosteron.
Tulang medular : Tulang pada unggas yang berhubungan langsung dengan rongga udara, tulang ini merupakan sumber kalsium saat pembentukan kerabang telur.
Uropigial : Tulang ekor ayam.
Urodeum : Bagian ureter paling akhir di kloaka tempat keluarnya urine yang akan bercampur dengan feses sehingga dinamakan ekskreta.
Vent : Kloaka tempat oviposition.
Vitelogeni : Proses sintesis asam lemak di hati untuk pembentukan kuning telur, terjadi di bawah kontrol hormon estrogen.
Varietas : Standar klasifikasi ayam berdasarkan warna bulu dan atau bentuk comb dalam satu breed, contoh Single Comb White Leghorn (SCWL).
Yolk (kuning telur) atau ovum : Bagian telur paling dalam yang mengandung lemak, trigliserida, glukosa, mineral, dan karoten.
Zona neutral thermic (ZNT) : Temperatur yang ideal dan nyaman untuk pemeliharaan ayam, yaitu antara 15 - 22 derajat Celcius
Ditulis oleh : Galuh Adi Insani (adioranye)
Appetit calcic spesific : Kalsium pakan yang didepositkan saat pertama kali terjadi vitelogeni dan saat pertama kali terjadi pembentukan kerabang telur.
Barbules : Pembentuk bulu.
Beard : Janggut atau pial ayam.
Breed (bangsa) : Klasifikasi ayam berdasarkan bentuk morfoligi dan besar tubuh yang sama dari setiap kelas, misalnya ayam Brahma.
Breeding farm : Industri pembibitan unggas, yaitu tempat untuk mengembangbiakkan unggas.
Broiler : Ayam penghasil daging yang dipelihara sampai umur 6 - 7 minggu dengan berat 1,5 - 2,0 kg dan konversi pakan 1,9 - 2,25.
Broodines (mengeram) : Usaha ayam untuk mengerami telur setelah bertelur, pada periode tertentu dan dibawah pengaruh hormon prolaktin.
Calbindin, Calcium Binding Protein (CaBP) : Ion kalsium pakan yang terkait dengan protein yang terabsorpsi di jonjot usus halus.
Class : Standar klasifikasi ayam berdasarkan daerah asal-usul geografis yang memberikan variasi perbedaan bentuk dan sifat karakteristik ayam, misalnya ayam Asia, ayam Amerika, dan sebagainya.
Cluth : Jumlah telur dalam setiap seri peneluran.
Comb : Jengger ayam
Coprodeum : Muara tempat keluarnya feses di kloaka ayam.
Creeper : Ayam yang mempunyai bentuk badan normal, tetapi kakinya pendek karena adanya gen C yang heterozigot.
Crest : Bentuk mahkota bulu kepala pada unggas.
Crop : Tembolok ayam tempat menyimpan pakan untuk sementara.
Ditjenak : Singkatan dari Direktorat Jendral Peternakan.
DOC (Day Old Chik) : Anak ayam umur sehari; ada juga yang menamakan “kuri” (=kutuk umur sehari). Selaras dengan istilah tersebut, juga berlaku untuk anak itik (Day Old Duck = DOD), anak puyuh (Day Old Coturnix = DOC), anak angsa (Day Old Geese = DOG).
Dual Purpose : Ayam tipe dwiguna yang mampu menghasilkan telur dan daging sama baiknya.
Efisiensi pakan : Besarnya bagian pakan yang dapat diubah menjadi produk (daging atau telur) yang dinyatakan dalam persen.
|Rumus| Efesiensi pakan broiler = (Kenaikan berat badan (g/ekor/hari) / Konsumsi pakan (g/ekor/hari) ) x 100% || Keterangan : efisiensi pakan semakin besar semakin baik, sedangkan konversi pakan semakin kecil semakin baik.
Ekskreta : Feses yang bercampur dengan urine pada unggas.
Feed Convertion Ratio (FCR) atau konversi pakan : Perbandingan antara jumlah pakan yang dihabiskan dan kenaikan berat badan pada periode waktu dan satuan berat yang sama (untuk ayam broiler). Konversi pakan pada ayam petelur adalah perbandingan jumlah pakan yang dihabiskan dengan produksi telur dikalikan massa telur (rata-rata berat telur).
| Rumus| Konversi pakan untuk ayam broiler = (Konsumsi pakan pada waktu dan berat yang sama / Kenaikan bobot badan pada waktu dan berat yang sama)
| Rumus| Konversi pakan untuk ayam petelur = (Konsumsi pakan pada waktu dan satuan berat sama / (HDA x Bobot telur pada waktu dan satuan berat sama))
Contoh konversi pakan untuk ayam broiler : Apabila berat broiler yang dipelihara sampai umur 6 minggu menghabiskan pakan 2,50 kg, sementara itu kenaikan berat badan (berat badan umur 6 minggu - berat DOC) selama 6 minggu adalah 1,25 kg, maka konversi pakan adalah 2,50 / 1,25 = 2,0
Feed mill : Pabrik pakan ternak.
Feed Intake (FI) atau konsumsi pakan : Jumlah pakan yang dihabiskan oleh ayam atau unggas pada periode waktu tertentu, misalnya konsumsi pakan setiap hari dihitung dengan satuan gram/ekor/hari.
Final stock : Ayam yang khusus dipelihara untuk menghasilkan telur atau daging yang telah melalui berbagai persilangan dan seleksi. Di antara ayam jantan atau betina final stock ini tidak boleh disilangkan karena keturunannya akan menghasilkan produksi 50% dari induknya.
Fondation stock (great grand parents stock) : Jenis ayam yang berasal dari persilangan dan seleksi dari berbagai kelas, bangsa, atau varietas yang dilakukan oleh pembibit dan merupakan bahan (stock) untuk membentuk GPS. Great grand parents ini dihasilkan dari persilangan galur murni (pure line).
Finisher : Periode pemeliharaan ayam broiler dan umur 3 - 7 minggu.
Flock mating : Perkawinan dari seekor ayam jantan dengan sekelompok ayam betina pada setiap flock.
Gain weight : Kenaikan berat badan pada periode waktu tertentu dengan cara mengurangi berat badan ayam pada akhir minggu dengan jumlah ayam dan jumlah hari sehingga diperoleh satuannya dalam gram/ekor/hari.
Grand parents stock (GPS) : Jenis ayam yang khusus dipelihara untuk menghasilkan parents stock (PS).
Gallus varius : Ayam hutan hijau jawa.
Gallus bankiva : Ayam hutan merah.
GAPUSI : Gabungan Penggemar Unggas Indonesia.
Gen dwarf : Gen ayam tipe ringan yang ditemukan Hutt (1949), diberi simbol dw.
Gen normal : Gen ayam tipe berat, diberi simbol DW.
Gizard atau empedal : Bagian saluran pencernaan mekanik unggas untuk melumatkan bolus sebelum diabsorbsi usus besar.
Grower : Periode pemeliharaan ayam petelur pada umur 6 - 12 minggu.
Galur murni (pure line) : Suatu breed atau varietas ayam yang telah mengalami seleksi dan pemurniaan berdasarkan sifat/karakteristik unggul tertentu yang akan digunakan untuk membentuk strain komersial melalui perkawinan atau persilangan.
Hen day average (HDA) : Persentase perbandingan antara jumlah produksi telur dan populasi ayam dalam satu kelompok pada satuan waktu tertentu. Contoh : hari ini jumlah ayam sebanyak 90 ekor dan bertelur 75 butir, berarti HDA = 75/90 x 100% = 83,33 %.
Hen house average (HHA) : Persentase perbandingan antara jumlah produksi telur dan jumlah ayam pada saat pertamakali ayam dimasukkan. Contoh : pada tanggal 1 Januari 1999 pak Bejo membeli ayam siap bertelur 100 ekor. Pada tanggal 10 Juni 1999, ayam dikandang tinggal 90 ekor (10 ekor mati). Produksi telur pada tanggal 10 Juni 1999 adalah 75 butir, sehingga HHA = 75/100 x 100% = 75%.
Hen fever : Ayam yang mempunyai gerakan lambat sehingga seperti ayam sakit, misalnya ayam Cochin.
High stock production : Ayam yang telah terseleksi dan produksi telur ataupun dagingnya tinggi.
Homeotermik : Suhu tubuh ayam yang selalu konstan 40 derajat Celcius - 41 derajat Celcius.
Hybrid commercial stock : Ayam yang telah diseleksi untuk dipasarkan secara komersial.
KINAK PRA : Kawasan Industri Peternakan Rakyat Agribisnis.
KINAK PIR : Kawasan Industri Peternakan Inti Rakyat.
KINAK SUPER : Kawasan Industri Sentra Usaha Peternakan Ekspor.
Karkas Unggas : Hasil pemotongan unggas (ayam) tanpa disertai bagian darah, bulu, kepala, cakar, usus, dan giblet (hati, jantung, dan empedal), tetapi paru-paru termasuk dalam bagian karkas.
Layer : Ayam penghasil telur yang dipelihara sampai umur 75 minggu (berproduksi dari umur 20 - 75 minggu).
Laying squence : Seri peneluran.
Legund : Ayam leher gundul (neck necked) yang membawa gen Na.
Meatness : Sifat dan kualitas daging pada ayam broiler yang terbentuk cukup baik.
Monophylitic origin : Teori asal usul ayam dari satu keturunan Gallus.
Molting : Peristiwa rontoknya bulu secara alamiah dan beraturan. Molting yang dipaksakan, dinamakan force molting atau induce molting, digunakan untuk mengatur produksi, harga telur, meningkatkan produksi, dan kualitas telur.
Ornamental : Ayam yang dipelihara untuk kesenangan.
Oviduk : Saluran reproduksi ayam betina yang terdiri atas infundibulum, magnum, isthmus, uterus dan vagina.
Ovarium : Alat reproduksi ayam betina yang menghasilkan ovum (yolk/kuning telur).
Oviposition : Peristiwa keluarnya telur dari kloaka (lay of point) karena pengaruh hormon oksitosin.
Ovulasi : Peristiwa keluarnya (yolk) dari folikel setelah robeknya pada bagian stigma oleh karena pengaruh luteinizing hormon, kemudian ovum ditangkap oleh mulut infundibulum.
Parent stock (PS) : Jenis ayam yang khusus dipelihara untuk menghasilkan final stock (FS).
Pen mating : Perkawinan dari beberapa betina dengan seekor pejantan, tetapi pejantan digilir pada setiap kandang.
Panting (hiperventilasi termik) : Usaha ayam untuk mengeluarkan panas tubuhnya karena heat loss lebih kecil daripada heat production.
Polyphyletic origin : Teori asal usul ayam berasal dari beberapa persilangan Gallus.
Porphirin : Pigmen yang menyebabkan warna coklat pada kerabang telur.
Poultry / unggas : Nama yang diberikan pada sekelompok hewan kelas Aves yang telah didomestikasi yang mampu memberikan nilai ekonomis dalam bentuk barang atau jasa untuk kesejahteraan manusia serta perkembangbiakannya di bawah pengelolaan manusia.
Poultry science : Ilmu pengetahuan baik prinsip atau praktis tentang unggas serta tentang reproduksi, produksi (budidaya), dan pemasarannya.
Poultry production (produksi ternak unggas) : Usaha menernakkan unggas guna mendapatkan nilai ekonomis yang setinggi-tingginya.
Proctodeum : Muara tempat keluarnya sperma di kloaka.
Pullet : Ayam petelur dara menjelang bertelur (umur 12 - 18 minggu).
Pure breed : Galur murni ayam.
Pterylae : Tempat tumbuhnya bulu pada kulit ayam.
Plumping : Penyerapan air dan mineral saat mulai terbentuknya kerabang tipis yang terjadi di isthmus.
Rate of gain : Laju pertumbuhan dan bobot badan.
Rongga udara (air sac) : kantong udara pada unggas (4 pasang dan satu tunggal) yang membantu proses pernafasan.
SAPRONAK : Sarana Produksi Peternakan, misalnya tempat pakan, egg tray.
Sekum (usus buntu) : Sepasang saluran pencernaan tempat mencerna serat kasar dan absorbsi air.
Squab : anak burung merpati.
Shank : Kaki ayam dari tarsometatarsus sampai jari.
Starter : Periode pemeliharaan ayam umur satu hari sampai umur tiga minggu (pada broiler) atau sampai umur enam minggu (pada ayam petelur).
Sex linkage inheritance : Gen yang terkait pada salah satu kromosom dari seks kromosom sehingga menghasilkan sifat seperti induknya pada anak yang jantan atau fenotif seperti bapaknya terdapat pada anak betinanya.
Strain : Klasifikasi ayam berdasarkan garis keturunan tertentu (breeding) melalui persilangan dari berbagai kelas, bangsa, atau varietas sehingga ayam tersebut mempunyai bentuk, sifat, bangsa, dan tipe produksi tertentu sesuai dengan tujuan produksi, contoh Hy-Line, Golden Commet, dll.
Stud mating : Perkawinan antara seekor ayam jantan dan seekor ayam betina.
Tipe : Standar klasifikasi aya berdasarkan kemampuan ayam menghasilkan produk komersial yang sesuai dengan tujuan pemeliharaan, misalnya ayam tipe petelur, tipe pedaging, dan tipe dwiguna.
Susu tembolok (crop milk) : Gel yang mengandung nutrien berkualitas tinggi, dihasilkan oleh burung merpati yang mengeram sampai menetaskan telur dan meloloh anaknya.
Spermatogenesis : Proses pembentukan sel sperma di tubuli seminiferi (sel Leydig) testis, di bawah kontrol hormon testosteron.
Tulang medular : Tulang pada unggas yang berhubungan langsung dengan rongga udara, tulang ini merupakan sumber kalsium saat pembentukan kerabang telur.
Uropigial : Tulang ekor ayam.
Urodeum : Bagian ureter paling akhir di kloaka tempat keluarnya urine yang akan bercampur dengan feses sehingga dinamakan ekskreta.
Vent : Kloaka tempat oviposition.
Vitelogeni : Proses sintesis asam lemak di hati untuk pembentukan kuning telur, terjadi di bawah kontrol hormon estrogen.
Varietas : Standar klasifikasi ayam berdasarkan warna bulu dan atau bentuk comb dalam satu breed, contoh Single Comb White Leghorn (SCWL).
Yolk (kuning telur) atau ovum : Bagian telur paling dalam yang mengandung lemak, trigliserida, glukosa, mineral, dan karoten.
Zona neutral thermic (ZNT) : Temperatur yang ideal dan nyaman untuk pemeliharaan ayam, yaitu antara 15 - 22 derajat Celcius
Ditulis oleh : Galuh Adi Insani (adioranye)
Jumat, 24 Oktober 2008
Lowering Stress to Improve Meat Quality and Animal Welfare
Gentle handling in well-designed facilities will minimize stress levels, improve efficiency and maintain good meat quality. Rough handling or poorly designed equipment is detrimental to both animal welfare and meat quality. Progressive slaughter plant managers recognize the importance of good handling practices. Constant management supervision is required to maintain high humane standards.
Every extra handling procedure causes increased stress and bruising. Elimination of unnecessary procedures at the slaughter plant will also reduce stress.
Every extra handling procedure causes increased stress and bruising. Elimination of unnecessary procedures at the slaughter plant will also reduce stress.
Restraint of Livestock
During twenty five years of work on livestock handling and design of restraining devices for animals, I have observed that many people attempt to restrain animals with sheer force instead of using behavioural principles. Improvements in the design of restraining devices enhances animal welfare and will reduce stress and injuries. A series of surveys conducted by the author showed that changing the design of a squeeze chute would reduce injuries to cattle (Grandin 1975). Squeeze chute design has improved. Some of the newer headgate designs may further reduce injuries. The pressure relief valve on a hydraulic chute must be set correctly. An animal restrained in a squeeze chute should be able to breath normally without straining. Under the best conditions, cattle can become bruised or injured in a conventional squeeze chute. A survey of seven major feedlots by Brown et al (1981) indicated that in five of the feedlots 1.6% to 7.8% of the animals were bruised. Even though bruises would heal by marketing time, pain and trauma may reduce weight gain. Research done by Bridget Voisinet at Colorado State University has shown that cattle that become excited and agitated in a squeeze chute will have lower weight gains and are more likely to have dark cutting meat and tougher meat. Cattle can become asphyxiated by excessive pressure on the carotid arteries. In a standard hydraulic stanchion squeeze chute used in most commercial feedyards an inexperienced operator can cause 2% of the cattle to collapse from pressure on the carotid arteries (Grandin 1980). A collapsed animal will die if the operator fails to release it immediately. Excessive hydraulic pressure can cause severe injuries. The animal's diaphragm can be ruptured (Fulton, R. 1973 personal communication). Excessive pressure can break the pelvis (Miles, D. 1992 personal communication). The author has also observed that excessive squeeze pressure can cause a significant reduction in weight gain. Good management can prevent many of these problems but there is still a great need for improved restraint devices for use on ranches and feedlots. I did not realize how poor existing chutes in feedlots were until I developed restraint devices for calf and beef slaughter plants. Quiet handling of cattle will reduce stress and injuries in squeeze chutes. Excited animals are more difficult to handle. It takes up to 30 minutes for an excited animal to calm down. To keep animals calm in a restraint device they must be calm when they enter it. Cattle should walk into a squeeze chute and walk out of it. Feedlot operators have found that calm handling of cattle in squeeze chutes will enable cattle to go back on feed more quickly.
Over the years I have designed several different types of cattle restraint devices for use in meat packing plants. During the course of developing these devices I have learned that the use of behavioural principles will keep both cattle and pigs calm. Many of these ideas could be incorporated into new designs for cattle restraining devices for the ranch farm or feedlot.
Over the years I have designed several different types of cattle restraint devices for use in meat packing plants. During the course of developing these devices I have learned that the use of behavioural principles will keep both cattle and pigs calm. Many of these ideas could be incorporated into new designs for cattle restraining devices for the ranch farm or feedlot.
Livestock Handling Systems, Cattle Corrals, Stockyards, and Races
This section of Grandin.Com contains drawings of cattle corral designs with curved races. Curved cattle chutes are more efficient for handling cattle because they take advantage of the natural behavior of cattle. Cattle move through curved races more easily because they have a natural tendency to go back to where they came from. In the computer aided drawing section there are layout drawings of cattle yard designs for both large and small ranches and feedlots. There are also drawings of a cattle loading ramp for trucks, diagonal stockyard pens for cattle, and detail drawings of a single file race and cattle dip vat. If you are planning to build new corrals or other cattle handling facilites you can download blueprints of cattle pen layouts that will reduce stress on cattle and improve handling efficiency.
Handling Facility Layout Rules:
The crowd pen must always be level.
If the system includes a ramp, it should be located within the single file chute.
An animal standing in the crowd pen must be able to see 2 to 3 body lengths up the single file chute before it curves. This will facilitate entry into the chute.
Handling Facility Layout Rules:
The crowd pen must always be level.
If the system includes a ramp, it should be located within the single file chute.
An animal standing in the crowd pen must be able to see 2 to 3 body lengths up the single file chute before it curves. This will facilitate entry into the chute.
Recommended Stunning Practices
Stunning an animal correctly will provide better meat quality. Improper electric stunning will cause bloodspots in the meat and bone fractures. Good stunning practices are also required so that a plant will be in compliance with the Humane Slaughter Act and for animal welfare. When stunning is done correctly, the animal feels no pain and it becomes instantly unconscious. An animal that is stunned properly will produce a still carcass that is safe for plant workers to work on.
Recommended Ritual Slaughter Practices
Ritual slaughter is slaughter done according to the religious requirements of either the Jewish or Muslim religious faith. The animal is slaughtered, without being stunned, with a razor sharp knife. When the cut is done correctly, the animal appears not to feel it. From an animal welfare standpoint, the major concern during ritual slaughter are the stressful and cruel methods of restraint (holding) that are used in some plants. Progressive slaughter plants use devices to hold the animal in a comfortable, upright position. Unfortunately, there are some plants which use cruel methods of restraint such as hanging live animals upside down. At Grandin Livestock Systems, we believe that the practice of hanging live cattle and calves upside down should be eliminated. For both humane and safety reasons, plants which conduct ritual slaughter should install modern upright restraining equipment. There are many different types of humane restraint devices available.
Behavioral Genetic
A bright orange sun is setting on a prehistoric horizon. A lone hunter is on his way home from a bad day at hunting. As he crosses the last ridge before home. a quick movement in the rocks off to his right catches his attention. Investigating, he discovers some wolf pups hiding in a shallow den. He exclaims, "Wow ... cool! The predator... in infant form."
After a quick scan of the area for adult wolves, he cautiously approaches. The pups are all clearly frightened and huddle close together as he kneels in front of the den . . . all except one. The darkest colored pup shows no fear of the man's approach. "Come here you little predator! Let me take a look at you, he says. After a mutual bout of petting by the man and licking by the wolf, the man suddenly has an idea. "If I take you home with me tonight, maybe mom and the kids will forgive me for not catching dinner . . . again."
INTRODUCTION
The opening paragraphs depict a hypothetical scenario of man first taming the wolf. Although we have tried to make light of this event, the fact is that no one knows exactly how or why this first encounter took place. The earliest archeological estimate indicates that it occurred in the late Glacial period, approximately 14,000 years BC (Boessneck, 1985). Another scenario is that wolves domesticated themselves. The presumption is that calm wolves with low levels of fear were likely to scavenge near human settlements. Both Coppinger and Smith (1983) and Zeuner (1963) suggest that wild species which later became domesticants started out as camp followers. Some wolves were believed to have scavenged near human settlements or followed hunting parties; wild cattle supposedly invaded grain fields, and wild cats may have invaded grainaries while hunting for mice. However, the most recent evidence obtained by sequencing mitochondrial DNA of 67 dog breeds and wolves from 27 localities indicates that dogs may have diverged from wolves over 100,000 years ago (Vita et al., 1997).
In any event, wolves kept for companions had to be easy to handle and socialize to humans. Within a few generations, early humans may have turned wolves into dogs by selecting and breeding the tamest ones. Thousands of years ago, humans were not aware that behavior in animals was heritable. However, even today people who raise dogs, horses, pigs, cattle, or chickens notice differences in the behavior of the offspring. Some animals are friendly and readily approach people, while others may be shy and nervous.
GENETIC EFFECTS OF DOMESTICATION
Price (1984) defined domestication as a process by which a population of animals becomes adapted to man and the captive environment by some combination of genetic changes occurring over generations and environmentally induced developmental events recurring during each generation:' In long-term selection experiments designed to study the consequences of selection for the tame" domesticated type of behavior, Belyaev (1979) and Belyaev et al. (1981) studied foxes reared for their fur. The red fox (Vulpes fulva) has been raised on seminatural fur farms for over 100 years and was selected for fur traits and not behavioral traits. However, they demonstrate three distinctly different characteristic responses to man. Thirty percent were extremely aggressive toward man, 60% were either fearful or fearfully aggressive, and 10% displayed a quiet exploratory reaction without either fear or aggression. The objective of this experiment was to breed animals similar in behavior to the domestic dog. By selecting and breeding the tamest individuals, 20 years later the experiment succeeded in turning wild foxes into tame, border collie-like fox-dogs. The highly selected "tame" population of (fox-dog) foxes actively sought human contact and would whine and wag their tails when people approached (Belyaev 1979). This behavior was in sharp contrast to wild foxes which showed extremely aggressive and fearful behavior toward man. Keeler et al. (1970) described this behavior:
Vulpes fulva (the wild fox) is a bundle of jangled nerves. We had observed that when first brought into captivity as an adult, the red fox displays a number of symptoms that are in many ways similar to those observed in psychosis. They resemble a wide variety of phobias, especially fear of open spaces, movement, white objects, sounds, eyes or lenses, large objects, and man, and they exhibit panic, anxiety, fear, apprehension and a deep trust of the environment~ They are 1) catalepsy-like frozen positions, accompanied by blank stares; 2) fear of sitting down; 3) withdrawal; 4) runaway flight reactions; and 5) aggressiveness. Sometimes the strain of captivity makes them deeply disturbed and confused, or may produce a depression- like state. Extreme excitation and restlessness may also be observed in some individuals in response to many changes in the physical environment. Most adult red foxes soon after capture break off their canine teeth on the mesh of our expanded metal cage in their attempts to escape. A newly captured fox is known to have torn at the wooden door of his cage in a frenzy until he dropped dead from exhaustion.
Although the stress of domestication is great, Belyaev (1979) and Belyaev et al. (1981) concluded that selection for tameness was effective in spite of the many undesirable characteristics associated with tameness. For example, the tame foxes shed during the wrong season and developed black and white patterned fur, and changes were found in their hormone profiles. This means that the monoestrus (once a year) cycle of reproduction was disturbed and the animals would breed at any time of the year. Furthermore, changes in behavior occurred simultaneously with changes in tail position and ear shape, and the appearance of a white muzzle, forehead blaze, and white shoulder hair. The white color pattern on the head is similar to many domestic animals (Belyaev 1979) (Figs. 1.1 and 1.2). The most dog-like foxes had white spots and patterns on their heads, drooping ears, and curled tails and looked more like dogs than the foxes that avoided people. The behavioral and morphological (appearance) changes were also correlated with corresponding changes in the levels of gender hormones. The tame foxes had higher levels of the neurotransmitter serotonin (Popova et al., 1975). Serotonin is known to inhibit some kinds of aggression (Belyaev, 1979), and serotonin ~levels are increased in the brains of people who take Prozac (fluoxetine).
The study of behavioral genetics can help explain why selection for calm temperament was linked to physical and neurochemical changes in Belyaev's foxes. Behavior geneticists and animal scientists are interested in understanding effects on behavior due to genetic influences or those which are due to environment and learning.
A BRIEF HISTORICAL REVIEW OF ANIMAL BEHAVIOR STUDY
This historical review is not intended to he comprehensive; our objective is to discuss some of the early discoveries that are important for our current understanding of animal behavior, with particular emphasis on genetic influence on behavior in domestic animals.
Early in the 17th century, Descartes came to the conclusion "that the bodies of animals and men act wholly like machines and move in accordance with purely mechanical laws" (in Huxley 1874). After Descartes, others undertook the task of explaining behavior as reactions to purely physical, chemical, or mechanical events. For the next three centuries scientific thought on behavior oscillated between a mechanistic view that animals are '~automatons" moving through life without consciousness or self-awareness and an opposing view that animals had thoughts and feelings similar to those of humans.
In "On the Origin of the Species" (1859), Darwin's ideas about evolution began to raise serious doubts about the mechanistic view of animal behavior. He noticed that animals share many physical characteristics and was one of the first to discuss variation within a species, both in their behavior and in their physical appearance. Darwin believed that artificial selection and natural selection were intimately associated (Darwin, 1868) and cleverly outlined the theory of evolution without any knowledge of genetics. In "The Descent of Man" (1871) Darwin concluded that temperament traits in domestic animals are inherited. He also believed, as did many other scientists of his tune, that animals have subjective sensations and could think. Darwin wrote: "The differences in mind between man and the higher animals, great as it is, is certainly one of degree and not of kind."
Other scientists realized the implications of Darwin's theory on animal behavior and conducted experiments investigating instinct. Herrick (1908) observed the behavior of wild birds in order to determine, first, how their instincts are modified by their ability' to learn, and second, the degree of intelligence they attain. On the issue of thinking in animals, Schroeder (1914) concluded: ~The solution, if it ever comes, can scarcely fail to illuminate, if not the animal mind, at least that of man." It is evident that by the end of the 19th century, scientists who studied animal behavior in natural environments learned that the mechanical approach could not explain all behavior.
Behaviorism
During the middle of the 20th century', scientific thought again reverted to the mechanical approach and behaviorism reigned throughout America. The behaviorists ignored both genetic effects on behavior and the ability of animals to engage in flexible problem solving. The founder of behaviorism, J. B. Watson (1930), stated that differences in the environment can explain all differences in behavior." He did not believe that genetics had any effect on behavior. In The Behavior of Organisms]' the psychologist B. F Skinner (1958) wrote that all behavior could be explained by the principles of stimulus-response and operant conditioning.
The first author visited with Dr. Skinner at Harvard University in 1968. Skinner responded to a question from her about the need for brain research by saying, '~We don't need to know about the brain because we have operant conditioning" (T. Grandin, personal communication, 1968). Operant conditioning uses food rewards and punishments to train animals and shape their behavior. In a simple Skinner box experiment, a rat can be trained to push a lever to obtain food when a green light turns on, or to push a lever very quickly to avoid a shock when a red light appears. The signal light is the '~conditioned stimulus." Rats and other animals can be trained to perform a complex sequence of behaviors by chaining together a series of simple operant responses. Skinner believed that even the most complex behaviors can be explained as a series of conditioned responses.
However, a rat's behavior is very limited in a Skinner box. It's a world with very little variation, and the rat has little opportunity to use its natural behaviors. It simply learns to push a lever to obtain food or prevent a shock. Skinnerian principles explain why a rat behaves a certain way in the sterile confines of a 30 x 30-cm Plexiglas box, but they don't reveal much about the behavior of a rat in the local dump. Outside of the laboratory, a rat's behavior is more complex.
Instincts versus Learning
Skinner's influence on scientific thinking slowed a bit in 1961 following the publication of ~The Misbehavior of Organisms" by Brelands and Brelands. This paper described how Skinnerian behavioral principles collided with instincts. The Brelands were trained Skinnerian behaviorists who attempted to apply the strict principles of operant conditioning to animals trained at fairs and carnivals. Ten years before this classic paper, the Brelands (1951) wrote, we are wholly affirmative and optimistic that principles derived from the laboratory can be applied to the extensive control of animal behavior under non laboratory condition]' However, by 1961, after training more than 6000 animals as diverse as reindeer, cockatoos, raccoons, porpoises, and whales for exhibition in zoos, natural history museums, department store displays, fair and trade convention exhibits, and television, the Brelands wrote a second article featured in the American Psychologist (1961), which stated, our backgrounds in behaviorism had not prepared us for the shock of some of our failures."
One of the failures occurred when the Brelands tried to teach chickens to stand quietly on a platform for 10 to 12 seconds before they received a food reward. The chickens would stand quietly on a platform in the beginning of training; however, once they learned to associate the platform with a food reward, half (50%) started scratching the platform, and another 25% developed other behaviors, such as pecking the platform. The Brelands salvaged this disaster by developing a wholly unplanned exhibit involving a chicken that turned on a juke box and danced. They first trained the chickens to pull a rubber loop which turned on some music. When the music started, the chickens would jump on the platform and start scratching and pecking until the food reward was delivered. This exhibit made use of the chicken's instinctive food-getting behavior. The first author remembers as a teenager seeing a similar exhibit, at the Arizona State Fair, of a piano-playing chicken in a little red barn. The hen would peck the keys of a toy piano when a quarter was put in the slot and would stop when the food came down the chute. This exhibit also worked because it was similar to a Skinner box in the laboratory.
The Brelands experienced another classic failure when they tried to teach raccoons to put coins in a piggy bank. Because raccoons are adept at manipulating objects with their hands, this task was initially easy. As training progressed, however, the raccoons began to rub the coins before depositing them in the bank. This behavior was similar to the washing behavior raccoons do as instinctive food-getting behavior. The raccoons at first had difficulty letting go of the coin and would hold and rub it. However, when the Brelands introduced a second coin, the raccoons became almost impossible to train. Rubbing the coins together 'in a most miserly fashion]' the raccoons got worse and worse as time went on. The Brelands concluded that the innate behaviors were suppressed during the early stages of training and sometimes long into the training, but as training progressed, instinctive food-getting behaviors gradually replaced the conditioned behavior. The animals were unable to override their instincts and thus a conflict between conditioned and instinctive behaviors occurred.
Ethology
While Skinner and his fellow Americans were refining the principles of operant conditioning on thousands of rats and mice, ethology was being developed in Europe. Ethology is the study of animal behavior in natural environments and the primary concern of the ethologists is instinctive or innate behavior (Eibl-Eibesfeldt and Kramer, 1958). Essentially, ethologists believe that the secrets to behavior are found in the animals genes and in the way the genes have been modified during evolution to deal with particular environments. The ethological trend originated with Whitman (1898), who regarded instincts as congenital reactions which are so constant and characteristic for each species that, like morphological structures, they may he of taxonomic significance. A similar opinion was held by Heinroth (1918). He trained newly hatched fledglings in isolation from adult birds of their own species and found that instinctive movements such as preening, shaking, and scratching were performed by young birds without observing other birds.
Understanding the mechanisms and programming that result in innate behavioral patterns and the motivations behind why animals behave the way they do is the primary focus of ethologists. Konrad Lorenz (1939, 1965, 1981) and Niko Tinbergen (1948, 1951) cataloged the behavior of many animals in their natural environments. Together they developed the ethogram. An ethogram is a complete listing of all the behaviors that an animal performs in its natural environment. The ethogram includes both innate and learned behaviors.
An interesting contribution to ethology came from studies on egg-rolling behavior in the greylag goose (Lorenz, 1965, 1981). He observed that when a brooding goose notices an egg outside her nest, an innate instinctive program is triggered to retrieve it. The goose fixates on the egg, rises to extend her neck and bill out over it, then gently rolls it back to the nest. This behavior is performed in a highly mechanical way If the egg is removed as the goose begins to extend her neck, she still completes the pattern of rolling the nonexistent egg back to the nest. Lorenz (1939) and Tinbergen (1948) termed this a 'fixed action pattern." Remarkably, Tinbergen also discovered that brooding geese can be stimulated to perform egg rolling on such items as beer cans and baseballs. The fixed action pattern of rolling the egg back to the nest can be triggered by anything outside the nest that even marginally resembles an egg. Tinbergen realized that geese possess a genetic-releasing mechanism for this fixed action pattern. Lorenz and Tinbergen called the object that triggers the release of a fixed action pattern "sign stimuli." When a mother bird sees the gaping mouth of her young, it triggers the maternal feeding behavior and the mother feeds her young. The gaping mouth is another example of sign stimuli that acts as a switch and turns on the genetically determined program (Herrick, 1908; Tinbergen, 1951).
Ethologists also explained the innate escape response of newly hatched goslings. When goslings are tested with a cardboard silhouette in the shape of a hawk moving overhead, it triggers a characteristic escape response. The goslings will crouch or run. However, when the silhouette is reversed to look like a goose, there is no effect (Tinbergen, 1951). Several members of the research community doubted the existence of such a hard-wired instinct because other scientists failed to repeat these experiments (Hirsh et al., 1955). Recently Canty and Gould (1995) repeated the classic experiments and explained why the other experiments failed. In the first place, goslings only respond to the silhouette when they are under 7 days old. Second, a large silhouette which casts a shadow must be used; third, goslings respond to the perceived predator differently depending on the circumstances. For example, birds tested alone try to run away from the hawk silhouette and birds reared and tested in groups tend to crouch (Canty and Gould, 1995). Nevertheless, fear is likely to be the basis of the response. Ducklings were shown to have higher heart rate variability when they saw the hawk silhouette (Mueller and Parker, 1980). Research by Balaban (1997) indicates that species-specific vocalizations and head movements in chickens and quail are controlled by distinct cell groups in the brain. To prove this, Balaban transplanted neural tube cells from developing quail embryos into chicken embryos. Chickens hatched from the transplanted eggs exhibited species-specific quail songs and bobbing head movements.
Do similar fixed action patterns occur in mammals? Fentress (1973) conducted an experiment on mice which clearly showed that animals have instinctive species-specific behavior patterns which do not require learning. Day-old baby mice were anesthetized and had a portion of their front legs amputated. Enough of the leg remained that the mice could easily walk. The operations were performed before the baby mice had fully coordinated movements so there was no opportunity for learning. When the mice became adults, they still performed the species-specific face-washing behavior; normal mice close their eye just prior to the foreleg passing over the face, and in the amputees the eye still closed before the nonexistent paw hit it. The amputees performed the face- washing routine as if they still had their paws. Fentress (1973) concluded that the experiment proved the existence of instincts in mammals.
The Science of Behavior Today
Two years after the Brelands article, Jerry Hirsh (1963) at the University of Illinois wrote a paper emphasizing the importance of studying individual differences. He wrote, "Individual differences are no accident. They are generated by properties of organisms as fundamental to behavior science as thermodynamic properties are to physical science." Today, scientists recognize the contributions of both the Skinnerian and the ethologists approach to understanding behavior Modern neuroscience supports Darwin's view on behavior. Bird and mammal brains are constructed with the same basic design. They all have a brain stem, limbic system, cerebellum, and cerebral cortex. The cerebral cortex is the part of the brain used for thinking and flexible problem solving. The major difference between the brains of people and animals is in the size and complexity of the cortex. Primates have a larger and more complex cortex than a dog or a pig; pigs have a more complex cortex than a rat or a mouse. Furthermore, all animals possess innate species-specific motor patterns which interact with experience and learning in the formation of behavior. Certain behaviors in both wild and domestic animals are governed largely by innate (hard-wired) programs; however, experiencing and learning are the most important factors in other behaviors.
A basic principle to remember is that animals with large, complex brains are less governed by innate behavior patterns. For example, bird behavior is governed more by instinct than that of a dog, whereas an insect would have more hard-wired behavior patterns than that of a bird. This principle was clear to Yerkes (1905) who wrote:
Certain animals are markedly plastic or voluntary in their behavior, others are as markedly fixed or instinctive. In the primates plasticity has reached its highest known stage of development; in the insects fixity has triumphed, instinctive action is predominant. The ant has apparently sacrificed adapt-ability to the development of ability to react quickly, accurately and uniformly in a certain way Roughly, animals might he separated into two classes: those which are in high degree capable of immediate adaptation to their conditions, and those that are apparently automatic since they depend upon instinct tendencies to action instead of upon rapid adaptation.
INTERACTIONS BETWEEN GENETICS AND EXPERIENCE
Some behavior patterns are similar between different species, and some are found only in a particular species. For example, the neural programs that enable animals to walk are similar in most mammals (Melton, 1991). On the other hand, courtship rituals in birds are very species-specific (Nottebohm, 1977). Some innate behavior patterns are very rigid and experience has little effect on them; other instinctive behaviors can be modified by learning and experience. The flehmann, or lip curl response of a bull when he smells a cow in estrus, and the kneel-down (lordois) posture of a rat in estrus are examples of behaviors that are rigid. Suckling of the mother by newborn mammals is another example of a hard-wired behavioral system. Suckling behavior does not vary Newborn mammals suckle almost anything put in their mouth.
An example of an innate behavior that is affected by learning is burrowing behavior in rats. Boice (1977) found that wild Norway rats and albino laboratory rats both dig elaborate burrows. Learning has some effect on the efficiency of burrowing, but the configuration of the burrows was the same for both the wild and domestic rats. The albino laboratory rats dug excellent burrows the first time they were exposed to an outdoor pen. Nest building in sows is another example of the interaction between instinct and learning. When a sow is having her first litter, she has an uncontrollable urge to build a nest. Nest building is hard-wired and hormonally driven because prostaglandin F2a injections will induce it in sows (Widowski and Curtis, 1989). However, sows earn from experience how to build a better nest with each successful litter.
Other behaviors are almost entirely learned. Some seagulls learn to drop shellfish on rocks to break them open, while others drop them on the road and let cars break them open (Grandin, 1995). Many animals ranging from apes to birds use tools to obtain food. Griffin (1994) and Dawkins (1993) provide many examples of complex learned behaviors and flexible problem solving in animals.
Innate behaviors used for finding food, such as grazing, scavenging, or hunting, are more dependent on learning than behaviors used to consume food. Mating behavior, nesting, eating, and prey-killing behaviors tend to be governed more by instinct (Gould, 1977). The greater dependence on learning to find food makes animals in the wild more flexible and able to adapt to a variety of environments. Behaviors used to kill or consume food can be the same in any environment. Mayr (1974) called these different behavioral systems "open" or "closed" to the effects of experience. A lion hunting her prey is an example of an open system. The hunting female lion recognizes her prey from a distance and carefully stalks her approach. Herrick (1910) wrote, "the details of the hunt vary every time she hunts; therefore, no combination of simple reflex arcs laid down in the nervous system will be adequate to meet the infinite variations of the requirements for obtaining food:'
Complex Interactions
Some of the interactions between genetics and experience have very complex effects on behavior. In birds, the chaffinch learns to sing its species-specific song even when reared in a sound-proof box where it is unable to hear other birds (Nottebohm, 1970, 1979). However, when chaffinches are allowed to hear other birds sing, they develop a more complex song. The basic pattern of canary song emerges even in the absence of conspecific (flock-mate) auditory models (Metfessel, 1935; Poulsen, 1959). Young canaries imitate the song of adult canaries they can hear, and when reared in groups they develop song patterns that they all share (Nottebohm, 1977). Many birds, such as the white crowned sparrow chaffinch, and parrot, can develop local song dialects (Nottebohm et al., 1976). Sparrows are able to learn songs by listening to recordings of songs with either pure tones or harmonic overtones. Birds trained with harmonic overtones learned to sing songs with harmonic overtones, but 1 year later, 85% of their songs reverted back to innate pure tone patterns (Nowicki and Marler, 1988). Further experiments by Mundinger (1995) attempted to determine the relative contribution of genetics and learning in bird song. Inbred lines of roller and border canaries were used in this study along with a hybrid cross of the two. The rollers were cross fostered to border hens and vice versa to control for effects of maternal behavior. The roller and border males preferred to sing innate song patterns instead of copying their tutors. The hybrids preferred to learn some of both songs. Furthermore, canaries are capable of learning parts of an alien song but have a definite preference for their own songs. Comparing these animals to those in Brelands and Brelands (1961) exhibits, birds can be trained to sing a different song, but genetically determined patterns have a strong tendency to override learning. In reviewing all this literature, it became clear that innate patterns in mammals can be overridden. Unfortunately the animals tend to revert back to innate behavior patterns.
THE PARADOX OF NOVELTY
Novelty is anything new or strange in an animal's environment. Novelty is a paradox because it is both fear-provoking and attractive. Paradoxically it is most fear-provoking and attractive to animals with a nervous, excitable temperament. Skinner (1922) wrote that a flighty animal such as the pronghorn antelope will approach a person lying on the ground waving a red flag. Einarsen (1948) further observed that some wild animals will approach various large, dangerous objects such as a power steam shovel. In more recent studies, Kruuk (1972) also observed attraction and reaction to novelty in Thompson's gazelles in Africa. In small groups, Thompson's gazelles are most watchful for predators (Elgar, 1989). Animals that survive in the wild by flight are more attentive to novelty than more placid animals. Gazelles can also distinguish between a dangerous hunting predator and one that is not hunting. The most dangerous predators attract the highest degrees of attraction in the Thompson's gazelle. They often move close to a cheetah when the cheetah is not hunting. Furthermore, when predators walk through a herd of Thompson's gazelles, the size of the flight zone varies depending on the species of predator.
Reaction to Novelty
Confronted with sudden novelty, highly reactive animals are more likely to have a major fear reaction. Examples of sudden novelty include being placed in a new cage, transport in a strange vehicle, an unexpected loud noise, or being placed in an open field. Using various experimental environments, Hennessy and Levine (1978) found that rats show varying degrees of stress and stress hormone levels proportional to the degree of novelty of the environment they are placed in; a glass jar is totally novel in appearance compared to the lab cage to which the animal was accustomed. Being placed in a glass jar was more stressful for rats than a clean lab cage with no bedding.
Livestock and Poultry Reaction to Novelty
Studies of the reaction to novelty in farm animals have been conducted by Moberg and Wood (1982), Stephens and Toner (1975), and Dantzer and Mormede (1983). When calves are placed in an open field test arena that is very dissimilar from their home pen, they show the highest degrees of stress (Dantzer and Mormede, 1983). Calves raised indoors were more stressed by an outdoor arena and calves raised outdoors were more stressed by an indoor arena. The second author is painfully familiar with similar responses in horses. When horses are taken to the mountains for the first time, a well-trained riding horse that is accustomed to many different show rings may panic when it sees a butterfly or hears a twig snapping on a mountain trail.
Genetic Factors and the Need for Novelty
In mammals and birds, normal development of the brain and sense organs requires novelty and varied sensory input. Nobel prize winning research of Hubel and Wiesel (1970) showed that the visual system is permanently damaged if kittens do not receive varied visual input during development. When dogs are raised in barren and nonstimulating environments they are also more excitable (Walsh and Cummins, 1975; Melzak and Burns, 1965). Schultz (1965) stated, "when stimulus variation is restricted central regulation of threshold sensitivities will function to lower sensory thresholds." Krushinski (1960) studied the influence of isolated conditions of rearing on the development of passive defense reactions (fearful aggression) in dogs and found that the expression of a well-marked fear reaction depends on the genotype of the animal. Airedales and German shepherds were reared under conditions of freedom (in homes) and in isolation (in kennels). Krushinski (1960) found that the passive defense reaction developed more acutely and reached a greater degree in the German shepherds kept in isolation compared to the Airedales. In general, animals reared in isolation become more sensitive to sensory stimulation because the nervous system attempts to readjust for the previous lack of stimulation.
In an experiment with chickens, Murphy (1977) found that chicks from a flighty genetic line were more likely to panic when a novel ball was placed in their pen, but they were also more attracted to a novel food than birds from a calm line. Cooper and Zubeck (1958), and Henderson (1968) found that rats bred to be dull greatly improved in maze learning when housed in a cage with many different objects; however, enriched environments had little effect on the rats bred for high intelligence. Greenough and Juraska (1979) found that rearing rats in an environment with many novel objects improves learning and resulted in increased growth of dendrites, which are nerve endings in the brain.
Pigs raised in barren concrete pens also seek stimulation (Grandin, 1989a,b; Wood-Gush and Vestergaard, 1991; Wood-Gush and Beilharz, 1983). Piglets allowed to choose between a familiar object and a novel object prefer the novel object (Wood-Gush and Vestergaard, 1991). Pigs raised on concrete are strongly attracted to novel objects to chew on and manipulate. The first author has observed that nervous, excitable hybrid pigs often chew and bit vigorously on boots or coveralls. This behavior is less common in placid genetic lines of pigs.
Although hybrid pigs are highly attracted to novelty, tossing a novel object into their pen will initially cause a strong flight response. Compared to calm genetic lines, nervous-hybrid pigs pile up and squeal more when startled. Pork producers report that nervous, fast-growing, lean hybrid pigs also tail-bite other pigs more often than calmer genetic lines Of pigs. jail biting occurs more often when pigs are housed on a concrete slatted floor which provides no opportunity for rooting.
Strong attraction or strong reaction to novelty has also been observed by the first author in cattle. Cattle will approach and lick a piece of paper laying on the ground when they can approach it voluntarily (Fig. 1.3). However, the same piece of paper blowing in the wind may trigger a massive flight response. Practical experience by both authors suggests that highly reactive horses are more likely to engage in vices such as cribbing or stall weaving when housed in stalls or runs where they receive little exercise. Denied variety and novelty in their environments, highly reactive animals adapt poorly compared to animals from calmer genetic lines (Price, 1984).
In summary, in both wild and domestic animals novelty is both highly feared and necessary Novelty is most desirable when animals can approach it slowly. Unfortunately, novelty is also fear-provoking when animals are suddenly confronted with it.
TEMPERAMENT
In animals as diverse as rats, chickens, cattle, pigs, and humans, genetic factors influence differences in temperament (Murphey et al., 1980b Kagan et al., 1988; Grandin, 1993b; Fordyce et al., 1988; Fujita et al., 1994; Hemsworth et al., 1990; Broadhurst, 1975; Reese et al., 1983; Murphy, 1977; Tulloh, 1961; Blizard, 1971). Some individuals are wary and fearful and others are calm and placid. Boissy (1995) stated, fearfulness is a basic psychological characteristic of the individual that predisposes it to perceive and react in a similar manner to a wide range of potentially frightening events]' In all animals, genetic factors influence reactions to situations which cause fear (Davis, 1992; Murphey et al., 1980b; Kagan et al, 1988; Boissy and Bouissou, 1995); therefore, temperament is partially determined by an individual animal's fear response. Rogan and LeDoux (1996) suggest that fear is the product of a neural system that evolved to detect danger and that it causes an animal to make a response to protect itself. Plomin and Daniels (1987) found a substantial genetic influence on shyness (fearfulness) in human children. Shy behavior in novel situations is considered a stable psychological characteristic of certain individuals. Shyness is also suggested to be among the most heritable dimensions of human temperament throughout the life span.
In an experiment designed to control for maternal effects on temperament and emotionality, Broadhurst (1960) conducted cross-fostering experiments on Maudsley Reactive (MR) and Non Reactive (MNR) rats. These lines of rats are genetically selected for high or low levels of emotional reactivity The results showed that maternal effects were not great enough to completely mask the temperament differences between the two lines (Broadhurst, 1960). Maternal effects can affect temperament, but they are not great enough to completely change the temperament of a cross-fostered animal which has a temperament that is very different from that of the foster mother. In extensive review of the literature, Broadhurst (1975) examined the role of heredity in the formation of behavior and found that differences in temperament between rats persist when the animals are all raised in the same environment.
Measuring Fear-Based Behaviors
One method of testing fearfulness is the open field test (Hall, 1934). Sudden placement of an animal in an open field test arena is used to measure differences in fearfulness. Open field testing has shown differences in fearfulness between different genetic lines of animals. The test arena floor is usually marked in a grid to measure how much the animals walk around and explore. Huck and Price (1975) showed that domestic rats are less fearful and will walk round the open held more than wild rats. Price and Loomis (1973) explained that some genetic strains of rats are less fearful and explore an open field arena more than others. Eysenck and Broadhurst (1964) found that rodents with high emotional reactivity are more fearful and explore the open field less compared to placid genetic lines.
In their study of genetic effects on behavior, Fuller and Thompson (1978) found that "simply providing the same defined controlled environment for each genetic group is not enough. Conditions must not only be uniform for all groups, but also favorable to the development of the behavior of interest." For example, in wartime Russia, Krushinski (1960) investigated the ability of dogs to be trained for the antitank service or as trail dogs trained to track human scent. The dogs were tied to a spike driven into the ground, and the person who regularly looked after them would let them lick from a bowl of food and then summon the dog to follow the man as he retreated 10 to 15 meters. The dog's activity was measured with a pedometer for the next 2 minutes. The most active dogs were found to be the best antitank dogs. They were also fearless. In the antitank service, dogs were trained to run up to a tank and either run along side of it or penetrate under the caterpillars of the tank. In order to do this, the dogs had to overcome their natural fear of a tank moving toward them at high speed. The less active dogs (as measured by the pedometer) were found to make the best trailer dogs. They slowly followed a trail and kept their noses carefully to the scent while negotiating the corners and turns on the trail. The more active dogs trailed at too high a speed and often jumped the corners and turns in the trail, which sometimes resulted in switching to another trail.
Mahut (1958) demonstrated an example of differences in fear responses between beagles and terriers. When frightened, beagles freeze and terriers run around frantically In domestic livestock, measuring fear reactions during restraint or in an open field test has revealed differences in temperament both between breeds and between individuals within a breed (Grandin, 1993a; Tulloh, 1961; Dantzer and Mormede, 1983; Murphey et al., 1980b, 1981). The fearful, flighty animals become more agitated and struggle more violently when restrained for vaccinations and other procedures (Fordyce et al., 1988; Grandin, 1993a). Fear is likely to be the main cause of agitation during restraint in cattle, horses, pigs, and chickens. Genetic effects on behavior during transport, handling, and restraint of these animals are further discussed in Chapter 4.
Species Differences in Fear Reactions
In an open field test, frightened rodents often stay close to the arena walls, whereas frightened cattle may run around wildly and attempt to escape. Rodents stay close to the walls because they naturally fear open spaces, whereas cattle run around wildly because they fear separation from the herd. This is an example of differences between species in their response to a similar fear- provoking situation. Fear can be manifested in many different ways. For example, a frightened animal may run around frantically and try to escape in one situation, while in another situation the same animal may freeze or limit its movement. Chickens often freeze when handled by humans. Jones (1984) called this "tonic immobility." The chickens become so frightened that they cannot move. Forceful capture of wild animals can sometimes inflict fatal heart damage. Wildlife biologists call this capture myopathy In summary, much is known about the complex phenomenon of fear, but many questions still remain.
BIOLOGICAL BASIS OF FEAR
Genetics influences the intensity of fear reactions. Genetic factors can also greatly reduce or increase fear reaction in domestic animals (Price, 1984; Parsons, 1988; Flint et al., 1995). Research in humans has clearly revealed some of the genetic mechanisms which govern the inheritance of anxiety (Lesch et al., 1996). LeDoux (1992) and Rogan and LeDoux (1996) state that all vertebrates can be fear-conditioned. Davis (1992) recently reviewed studies on the biological basis of fear. Overwhelming evidence points to the amygdala as the fear center in the brain. A small bilateral structure located in the limbic system, the amygdala is where the triggers for flight or fight" are located. Electrical stimulation of the amygdala is known to increase stress hormones in rats and cats (Matheson et al., 1971; Setckleiv et al., 1961); destroying the amygdala can make a wild rat tame and reduce its emotionality (Kemble et al., 1984). Destroying the amygdala also makes it impossible to provoke a fear response in animals (Davis, 1992). Blanchard and Blanchard (1972) showed that rats lose all of their fear of cats when the amygdala is lesioned. Furthermore, when a rat learns that a signal light means an impending electric shock, a normal response is to freeze. Destroying the amygdala will eliminate this response (Blanchard and Blanchard, 1972; LeDoux et al., 1988, 1990). Finally, electrical stimulation of the amygdala makes humans feel fearful (Gloor et al., 1981). Animal studies also show that stimulation of the amygdala triggers a pattern of responses from the autonomic nervous system similar to that found in humans when they feel fear (Davis, 1992).
Heart rate, blood pressure, and respiration also change in animals when the flight or fight response is activated (Manuck and Schaefer, 1978). All these autonomic functions have neural circuits to the amygdala. Fear can be measured in animals by recording changes in autonomic activity In humans, Manuck and Schaefer (1978) found tremendous differences in cardiovascular reactivity in response to stress, reflecting a stable genetic characteristic of individuals.
Fearfulness and Instinct
Fearfulness and instinct can conflict. This principle was observed firsthand by the second author during his experience raising Queensland Blue Heeler dogs. Annie's first litter was a completely novel experience because she had never observed another dog giving birth or nursing pups. She was clearly frightened when the first pup was born and it was obvious that she did not know what the pup was; however, as soon as she smelled it her maternal instinct took over and a constant uncontrollable licking began. Two years later, Annie's daughter Kay had her first litter. Kay was more fearful than her mother and her highly nervous temperament overrode her innate licking program. When each pup was born Kay ran wildly around the room and would not go near them. The second author had to intervene and place the pups under Kay's nose; otherwise, they may have died. Kay's nervous temperament and fearfulness were a stronger motivation than her motherly instinct.
NERVOUS SYSTEM REACTIVITY CHANGED BY THE ENVIRONMENT
Raising young animals in barren environments devoid of variety and sensory stimulation will have an effect on development of the nervous system. It can cause an animal to be more reactive and excitable when it becomes an adult. This is a long-lasting, environmentally induced change in how the nervous system reacts to various stimuli. Effects of deprivation during early development are also relatively permanent. Melzak and Burns (1965) found that puppies raised in barren kennels developed into hyperexcitable adults. In one experiment the deprived dogs reacted with ~diffuse excitement" and ran around a room more than control dogs raised in homes by people. Presenting novel objects to the deprived dogs also resulted in diffuse excitement." Furthermore, the EEGs of the kennel-raised dogs remained abnormal even after they were removed from the kennel (Melzak and Burns, 1965). Simons and Land (1987) showed that the somatosensory cortex in the brains of baby rats will not develop normally if sensory input was eliminated by trimming their whiskers. A lack of sensory input made the brain hypersensitive to stimulation. The effects persisted even after the whiskers had grown back.
Development of emotional reactivity of the nervous system begins during early gestation. Denenberg and Whimbey (1968) showed that handling a pregnant rat can cause her offspring to be more emotional and explore less in an Open field compared to control animals. This experiment is significant because it shows that handling the pregnant mother had the opposite effect on the behavior of the infant pups. Handling and possibly stressing the pregnant mothers changed the hormonal environment of the fetus which resulted in nervous offspring. However, handling newborn rats by briefly picking them up and setting them in a container reduced emotional reactivity when the rats became adults (Denenberg and Whimbey 1968). The handled rats developed a calmer temperament.
The adrenal glands are known to have an effect on behavior (Fuller and Thompson, 1978). The inner portions of the adrenals secrete the hormones adrenaline and noradrenaline, while the outer cortex secretes the gender hormones androgens and oestrogens (reproductive hormones), and various corticosteroids (stress hormones). Yeakel and Rhoades (1941) found that Hall's (1938) emotional rats had larger adrenals and thyroids compared to the nonemotional rats. Richter (1952, 1954) found a decrease in the size of the adrenal glands in Norway rats accompanied by domestication. Several line and strain differences have been found since these early reports. Furthermore, Levine (1968) and Levine et al. (1967) showed that brief handling of baby rats reduces the response of the adrenal gland to stress. Denenberg et al. (1967) concluded that early handling may lead to major changes in the neuroendocrine system.
Changing Reactivity versus Taming
Adult wild rats can be tamed and become accustomed to handling by people (Galef, 1970). This is strictly learned behavior. Taming full-grown wild animals to become accustomed to handling by people will not diminish their response to a sudden novel stimulus. This principle was demonstrated by Grandin et al. (1994) in training wild antelope at the Denver Zoo for low- stress blood testing. Nyala are African antelope with a hair-trigger flight response used to escape from predators. During handling in zoos for veterinary treatments, nyala are often highly stressed and sometimes panic and injure themselves. Over a period of 3 months, Grandin et al. (1995) trained nyala to enter a box and stand quietly for blood tests while being fed treats. Each new step in the training had to be done slowly and carefully Ten days were required to habituate the nyala to the sound of the doors on the box being closed.
All the training and petting by zoo keepers did not change the nyala's response to a sudden, novel stimulus. When the nyala saw repairman on the barn roof they suddenly reacted with a powerful fear response and crashed into a fence. They had become accustomed to seeing people standing at the perimeter of the exhibit, but people on the roof was novel and very frightening. Sudden movements such as raising a camera up for a picture also caused the nyala to flee.
Domestic versus Wild
Wild herding species show much stronger fear responses to sudden novelty compared to domestic ruminants such as cattle and sheep. Domestic ruminants have attenuated flight responses due to years of selective breeding (Price, 1984). Wild ruminants will learn to adapt in captivity and associate people with food, but when frightened by some novel stimulus they are more likely to panic and injure themselves (Grandin, 1993b, 1997).This is especially likely if they are prevented from fleeing by a fence or other barrier. Principles for training and handling all herding animals are basically similar. Training procedures used on flighty antelope or placid domestic sheep are the same. The only difference is the amount of time required. Grandin (1989c) demonstrated this by training placid Suffolk sheep to voluntarily enter a tilting restraining device in one afternoon, but it took 3 months to train the nyala.
In summary, experience can affect behavior in two basic ways: by conventional learning or by changing nervous system reactivity Most importantly, environmental conditions (enriched versus barren) have the greatest effect on the nervous systems of young animals.
NEOTENY
Neoteny is the retention of the juvenile features in an adult animal. Genetic factors influence the degree of neoteny in individuals. Neoteny is manifested both behaviorally and physically In the forward to "The Wild Canids" (Fox, 1975), Conrad Lorenz adds a few of his observations on neoteny and the problems of domestication:
The problems of domestication have been an obsession with me for many years. On the one hand I am convinced that man owes the life-long persistence of his constitutive curiosity and explorative playfulness to a partial neoteny which is indubitably a consequence of domestication In a curiously analogous manner does the domestic dog owe its permanent attachment to its master to a behavioral neoteny that prevents it from ever wanting to be a pack leader On the other hand, domestication is apt to cause an equally alarming disintegration of valuable behavioral traits and an equally alarming exaggeration of less desirable ones.
Infantile characteristics in domestic animals are discussed by Price (1984), Lambooij and van Putten (1993), Coppinger and Coppinger (1993), Coppinger and Scheider (1993), and Coppinger et al. (1987). The shortened muzzle in dogs and pigs is an example. Domestic animals have been selected for a juvenile head shape, shortened muzzles, and other features (Coppinger and Smith, 1983). Furthermore, retaining juvenile traits makes animals more tractable and easy to handle. The physical changes are also related to changes in behavior.
Genetic studies point to the wolf as the ancestor of domestic dogs (Isaac, 1970). During domestication, domestic dogs have retained many of the infant wolf behaviors. For example, wolf pups bark and yap a lot but adult wolves rarely bark; domestic dogs bark a lot (Fox, 1975; Scott and Fuller, 1965). Wolves have hard-wired instinctive behavior patterns that determine dominance or submission in social relationships. In domestic dogs, the ancestral social behavior patterns of the wolf are fragmented and incomplete. Frank and Frank (1982) observed that the rigid social behavior of the wolf has disintegrated into "an assortment of independent behavioral fragments." Malamutes raised with wolf pups fail to read the social behavior signals of the wolf pups. Further comparisons found that the physical development of motor skills is slower in the malamute. Goodwin et al. (1997) studied 10 different dog breeds which ranged from German shepherds and Siberian huskies to bulldogs, cocker spaniels, and terriers. They found that the breeds which retained the greatest repertoire of wolf-like social behaviors were the breeds that physically resembled wolves, such as German shepherds and huskies. Barnett et al. (1979) and Price (1985) both conclude that experience can also cause an animal to retain juvenile traits. Gould (1977) also considered the effects of neoteny and stated that neoteny is determined by changes in a few genes that determine the timing of different developmental stages.
OVERSELECTION FOR SPECIFIC TRAITS
Countless examples of serious problems caused by continuous selection for a single trait can be found in the medical literature (Steinberg et al., 1994; Dykman et al., 1969). People with experience in animal husbandry know that overselection for single traits can ruin animals. Good dog breeders know this. Sometimes traits that appear to be unrelated are in fact linked. Wright (1922, 1978) demonstrated this clearly by continuous selection for hair color and hair patterns in inbred strains of guinea pigs. Depressed reproduction resulted in all the strains. Furthermore, differences in temperament, body conformation, and the size and shape of internal organs were found. Belyaev (1979) further showed that continuous selection for a calm temperament in foxes resulted in negative effects on maternal behavior and neurological problems. The fox experiments also found graded changes in many traits over several years of continuous selection for tame behavior. Physiological and behavioral problems increased with each successive generation. In fact, some of the tamest foxes developed abnormal maternal behavior and cannibalized their pups. Belyaev et al. (1981) called this "destabilizing selection," in contrast to "stabilizing selection" found in nature (Dobzhansky 1970; Gould, 1977).
There are also countless examples in the veterinary medical literature of abnormal bone structure and other physiological defects caused by overselecting for appearance traits in dog breeds (Ott, 1996). The abnormalities range from bulldogs with breathing problems to German shepherds with hip problems. Scott and Fuller (1965) reported the negative effects of continuous selection for a certain head shape in cocker spaniels:
In our experiments we began with what were considered good breeding stocks, with a fair number of champions in their ancestry. When we bred these animals to their close relatives for even one or two generations, we uncovered serious defects in every breed. . .Cocker spaniels are selected for a broad forehead with prominent eyes and a pronounced "stop," or angle, between the nose and forehead. When we examined the brains of some of these animals during autopsy, we found that they showed a mild degree of hydroencephaly; that is, in selecting for skull shape, the breeders accidentally selected for a brain defect in some individuals. Besides all this, in most of our strains only about 50 percent of the females were capable of rearing normal, healthy litters, even under nearly ideal conditions of care.
Overselection in Livestock
Single-minded selection for production traits such as rapid gain and leanness resulted in pigs and cattle with more excitable temperaments (Grandin, 1994). Compared to the older genetic lines with more hack fat, observations by the first author on thousands of pigs indicate that lean hybrids are more excitable and difficult to drive through races. Lean hybrid pigs also have a greater startle response. Separating a single animal from the group is more difficult. Recent research conducted in our laboratory has shown that cattle with an excitable temperament have lower weight gains and more meat quality problems (Voisinet et al., 1997a,b). This research illustrates that selection away from a very excitable temperament would be beneficial. However, overselection for an excessively calm temperament could possibly result in some unknown detrimental trait.
Links between Different Traits
Casual observations by the first author also indicate that the most excitable, flighty pigs and cattle have a long, slender body with fine bones. Some of the lean hybrid pigs have weak legs and a few of the normally brown-eyed pigs now have blue eyes. Blue eyes are often associated with neurological problems (Bergsma and Brown, 1971; Schaible, 1963). Furthermore, pigs and cattle with large, bulging muscles often have a calmer temperament than lean animals with less muscle definition. However, animals with the muscle hypertrophy trait (double muscling) have a more excitable temperament (Holmes et al., 1972). Double muscling is extreme abnormal muscling and it might have the opposite effect on temperament compared to normal muscling.
Another example of apparently unrelated traits being linked is deafness in dogs of the pointer breed selected for nervousness (Kllen et al., 1987, 1988). There appears to be a relationship between thermoregulation and aggressiveness. Wild mice selected for aggressiveness used larger amounts of cotton to build their nests than mice selected for low aggression (Sinyter et al., 1995). This effect occurred in both laboratory and wild Strains of mice.
Researchers using high-tech "knockout" gene procedures have been frustrated by the complexity of genetic interactions. In this procedure, genes are knocked out in a gene-targeting procedure whereby a gene is prevented from performing its normal function. The knockout experiments have shown that blocking different genes can have unexpected effects on behavior. In one experiment, superaggressive mice were created when genes involved with learning were inactivated (Chen et al., 1994). The mutant mice had little or no fear and fought until they broke their backs. In another experiment the knockout mutants demonstrated normal behavior until they had pups, and failed to care for them (Brown et al., 1996). In still another experiment, Konig et al. (1996) disabled the gene that produces enkephalin (a brain opioid substance) and found unexpected results. Enkephalin is a substance normally involved in pain perception; however, the mice that were deficient in this substance were very nervous and anxious. They ran frantically around their cages in response to noise. The bottom line conclusion from several different knockout experiments is that changing one gene has unexpected effects on other systems. Traits are linked, and it may be impossible to completely isolate single gene effects. Researchers warn that one must be careful not to jump to a conclusion that they have found an '~aggression gene" or a "maternal gene" or an "anxiety gene." To use an engineering analogy, one would not conclude that they had found the "picture center" in a television set after they cut one circuit inside the set that ruined the picture. Gerlai (1996) and Crawley (1996) also warn that knocking out the same gene in two different species may have different effects on behavior. This is due to the complex interactions between many different genes.
Twenty years ago behavioral geneticists concluded that the inheritance of behavior is complex. Fuller and Thompson (1978) concluded, "It has been found repeatedly that no one genetic mechanism accounts exclusively for a particular kind of behavtor.
Random Factors
Behavioral geneticists have discovered that it is impossible to completely control variation in some traits. Gartner (1990) found that breeding genetically similar inbred lines of rats failed to stop weight fluctuations. Even under highly standardized laboratory conditions, body weights continued to fiuctuate between animals. Pig breeders have also observed that commercially bred hybrid lines of pigs do not gain weight at the same rate. Random unknown factors affect variability even in genetically identical animals. Factors in utero may be one cause; the other causes are unknown. Darrel Tatum and his students at Colorado State University found both body conformation and meat quality variation in cattle which were 50% English (Bos taurus) and 50% Brabman (Bos indicus). Some animals had more Brahman characteristics, with larger humps and longer ears than others; the body conformation of many of the animals was not half English and half Brahmatn. The characteristics of the meat varied as well; animals that looked more Brahman had tougher meat. The animals had about 10% variation from the body shape and meat characteristics of Brahman half-bloods.
Gartner (1990) concluded that up to 90% of the cause of random variability cannot be explained by differences in the animals' physical environment. In both mice and cattle, random factors affected body weights. Gartner (1990) believes that the random factors may have their influence either before or shortly after fertilization.
The interactions between environmental and genetic factors are complex. Both an animals' genetic makeup and its environment determine how it will behave. In subsequent chapters in this book the interactions of genetics and environment will be discussed in greater detail. Genetics has profound effects on an animal's behavior.
CONCLUSIONS
There is a complex interaction between genetic and environmental factors which determines how an animal will behave. The animal's temperament is influenced by both genetics and learning. Another principle is that changes in one trait, such as temperament, can have unexpected effects on other apparently unrelated traits. Overselection for a single trait may result in undesirable changes in other behavioral and physical traits.
REFERENCES
Adler, A. (1996). How songbirds get their tunes. Sci. News 149, 280-281.
Balaban, E. (1997). Changes in multiple brain regions underlie species differences in complex, congenital behavior. Proc. Natl. Acad. Sci. USA 94, 2001-2006.
Barnett, S. A., Dickson, R. G., and Hocking, W. E. (1979). Genotype and environment in the social interactions of wild and domestic "Norway" rats. Aggressive Behav. 5, 105-119.
Belyaev, D. K. (1979). Destabilizing selection as a factor in domestication. J. Hered. 70, 301-308.
Belyaev, D. K., Ruvinksy, A. 0., and Trut, L. N. (1981). Inherited activation-inactivation of the star gene in foxes. J. Hered. 72, 267-274.
Bergsma, D. R., and Brown, K. S. (1971). White fur, blue eyes, and deafness in the domestic cat. J. Hered. 62, 171-185.
Blanchard, D. C., and Blanchard, R. J., (1972). Innate and conditioned reactions to threat in rats with amygdaloid lesions. J. Comp. Physiol. Psychol. 81, 281-290.
Blizard, D. A. (1971). Autonomic reactivity in the rat: Effects of genetic selection for emotionality. J. Comp. Physiol. Psychol. 76, 282-289.
Boessneck,J. (1985). [Domestication and its sequelae] Die Domestikation und irhe Folgen. Tieraerztl. Prax. 13(4), 479-497 (in Gennan).
Boice, R. (1977). Burrows of wild and albino rats; Effects of domestication, outdoor raising, age, experience and maternal state. J. Comp. Physiol. Psych. 91, 649-661.
Boissy, A. (1995). Fear and fearfulness in animals. Q. Rev. Biol. 70(2), 165-191.
Boissy, A., and Bouissou, M.-F (1995). Assessment of individual differences in behavioral reactions of heifers exposed to various fear-eliciting situations. App. Anim. Behav. Sci. 46, 17-31.
Brelands, K., and Brelands, M. (1951). A field of applied animal psychology Am. Psychol. 6, 202-204.
Brelands, K., and Brelands, M. (1961). The misbehavior of organisms. Am. Psychol. 16, 681-684.
Broadhurst, P. L. (1960). Analysis of maternal effects in the inheritance of behavior. Anim. Behav. 9, 129-141.
Broadhurst, P. L. (1975). The Maudsley reactive and non-reactive strains of rats. A survey. Behav. Genet. 5, 299-319.
Brown, J. R., Ye, H., Bronson, R. T., Dikkes, P, and Greenberg, M. E. (1996). A defect in nurturing in mice lacking the immediate early gene fosB. Cell 86, 297-309.
Canty, N., and Gould, J. (1995). The Hawk/Goose experiment; sources of variability. Anim. Behav. 50, 1091-1095.
Chen, C., Rainnie, D. G., Greene, R. W., and Tonegawa, S. (1994). Abnormal fear response and aggressive behavior in mutant mice deficient for a-calcium-calmodin kinease II. Science 266, 291-294.
Cooper, R. M., and Zubek,J. P (1958). Effects of enriched and restricted early environments on learning ability of bright and dull rats. Can. J. Psychol. 12, 159-164.
Coppinger, L., and Coppinger, R. (1993). Dogs for herding livestock. In "Livestock Handling and Transport" (T. Grandin, ed.), pp. 179-196. CAB International, Wallingford, UK.
Coppinger, R., and Schneider, R. (1993). Evolution of working dog behavior. In "The Domestic Dog: Its Evolution, Behavior and Interactions with People" (J. Serpell, ed.). Cambridge University Press, Cambridge, UK.
Coppinger, R., Glendinning, J., Torop, E., Matthay C., Sutherland, M., and Smith, C. (1987). Degree of behavioral neoteny differentiates canid polymorphy. Ethology 75, 85-108.
Coppinger, R. P, and Smith, C. K. (1983). The domestication of evolution. Environ. Conserv. 10, 283-292.
Craw1ey, J. N., (1996). Unusual behavioral phenotypes of inbred mouse strains. Trends Neurosci. 19(5), 181-182.
Dantzer, R., and Mormede, P (1983). Stress in farm animals. A need for re-evaluation. J. Anim. Sci. 57, 618.
Darwin, C. R. (1859). "On the Origin of Species." Oxford University Press (published in 1958 by Mentor, New York).
Darwin, C. R. (1868). "The Variation of Plants and Animals under Domestication," Vol.1 and 2. John Murray, London.
Darwin, C. (1871). "The Descent of Man and Selection in Relation to gender." Modern Library, New York.
Davis, M. (1992). The role of the amygdala in fear and anxiety. Annu. Rev. Neurosci. 15, 353-375.
Dawkins, M. S. (1993). "Through our Eyes Only: The Search for Animal Consciousness." Freeman, New York.
Denenberg, V. H., and Whimbey, A. E. (1968). Experimental programming of life histories: Towards an experimental science of individual differences. Dev Psychobiol. 1(1), 55-59.
Denenberg, V H., Brumaghim,J. T., Haltmeyer, G. C., and Zarrow M. X. (1967). Increased adrenocortical activity in the neonatal rat following handling. Endocrinology (Baltimore) 81, 1047-1052.
Dobzhansky, T. (1970). "Genetics of the Evolutionary Process." Columbia University Press, New York.
Dykman, R. A., Murphee, 0. D., and Peters J. E. (1969). Like begets like: Behavior tests, classical autonomic and motor conditioning in two strains of pointer dogs. Ann. N. Y Acad. Sci. 159, 976-1007.
Eibi-Eibesfeldt, I., and Kramer, S. (1958). Ethology, the comparative study of animal behavior. Q. Rev Biol. 33, 181-211.
Einarsen, A. S. (1948). "The Pronghorn Antelope." Wildlife Management Institute, Washington, DC.
Elgar, M. A. (1989). Predators vigilance and group size in mammals and birds. A critical review of the empirical evidence. Biol. Rev. Cambridge Philos. Soc. 64, 13-33.
Eysenck, H.J., and Broadhurst, P. L. (1964). Experiments with animals: Introduction. In "Experiments in Motivation" (H.J. Eysenck, ed.), pp. 285-291. Macmillan, New York.
Fentress,J. C. (1973). Development of grooming in mice with amputated forelimbs. Science 179, 204-205.
Flint,J., Corley, R., DeFries,J. C., Fulker, D. W., Gray,J. A., Miller, S., and Collins, A. C. (1995). A simple genetic basis for a complex physiological trait in laboratory mice. Science 269, 1432-1435.
Fordyce, G., Dodt, R. M., and Wythes,J. R. (1988). Cattle temperaments in extensive herds in northern Queensland. Ausi. J. Exp. Agric. 28, 683-687.
Fox, M. W, ed. (1975). "The Wild Canids: Their Systematics, Behavioral Ecology and Evolution." Van Nostrand-Reinhold, New York.
Frank, H., and Frank, M. G. (1982). On the effects of domestication on canine social development and behavior. Appl. Anim. Ethol. 8, 507-525.
Fujita, 0., Annen, Y., and Kitaoka, A. (1994). Tsukuba high and low emotional strains of rats (Rattus norvegicus): An overview. Behav. Genet. 24, 389-415.
Fuller,J. L., and Thompson, W. R. (1978). "Foundations of Behavior Genetics:' Mosby, St. Louis, MO.
Galef, B. G., Jr., (1970). Aggression and timidity: Responses to novelty in feral Norway rats. J. Comp. Physiol. Psychol. 70, 370-381.
Gartner, K. (1990). A third component causing random variability besides environment and genotype. A reason for the limited success of a thirty year long effort to standardize laboratory animals? Lab. Anim. 24, 71-77.
Gerlai, R. (1996). Gene-targeting studies of mammalian behavior: Is it the mutation or the background genotype? Trends Nesrosci. 19(5), 177-181.
Gloor, P., Oliver, A., and Quesney, L. F. (1981). The role of the amygdala in the expression of psychic phenomenon in temporal lobe seizures. In "The Amygdaloid Complex" (Y. Ben-Ari, ed.), pp. 489-507. Elsevier/North-Holland, New York.
Goodwin, D., Bradshaw,J. W. S., and Wickens, S. M. (1997). Paedomorphosis affects visual signals of domestic dogs. Anim. Behav. 53, 297-304.
Gould, S.J. (1977). "Ontogeny and Phylogeny." Harvard University Press (Belknap Press), Cambridge, MA and London.
Grandin, T. (1989a). Effects of rearing environment and environmental enrichment on behavior and neural development in young pigs. Ph.D. Dissertation, University of Illinois, Urbana.
Grandin, T. (1989b). Environmental causes of abnormal behavior. Large Anim. Vet., June 13-16, 4(3)13-16.
Grandin, T. (1989c). Voluntary acceptance of restraint by sheep. Appl. Anim. Behav. Sci. 23, 257-261.
Grandin, T. (1993a). Behavioral agitation during handling of cattle is persistent over time. Appl. Anim. Behav. Sci. 36, 1-9.
Grandin, T. (1993b). Behavioral principles of cattle handling under extensive conditions. In "Livestock Handling and Transport" (T. Grandin, ed.), pp. 43-57. CAB International, Wallingford, UK.
Grandin, T. (1994). Solving livestock handling problems. Vet. Med. 89,989-998.
Grandin, T. (1995). "Thinking in Pictures." Doubleday, New York.
Grandin, T. (1997). Assessment of stress during handling and transport. J. Anim. Sci. 75, 249-257.
Grandin T., Rooney, M. B., Phillips, M. Cambre, R. C., Irlbeck, N. A., and Graffam, W. (1995). Conditioning of nyala (Tragelaphus angasi) to blood sampling in a crate with positive reinforcement. Zoo Biol. 14, 261-273.
Greenough, W. T., and Juraska, J. M. (1979). Experience induced changes in fine brain structure: Their behavioral implications. In "Development and Evolution of Brain Size: Behavioral Implications" (M. E. Hahn, C. Jensen, and B. C. Dudek, eds. . pp. 295-320. Academic Press. New York.
Griffin, D. (1994). "Aniinal Minds:" University of Chicago Press, Chicago.
Hall, C. S. (1934). Emotional behavior in the rat. I. Defecation and urination as measures of individual differences in emotionality. J. Comp. Psychol. 18, 385-403.
Hall, C. S. (1938). The inheritance of emotionality. Sigma Xi Q. 26, 17-27.
Heinroth, 0. (19l8). Reflektorische Bewegungen bei Voegeln. J. Ornithol. 66, Nos. 1 and 2.
Heinroth, 0. (1938). "Aus dem Leben der Vogel." Berlin.
Hemswworth, P. H., Barnett, J. L., Treacy, D., and Madgwick, P (1990). The heritability of the trait fear of humans and the association between this trait and subsequent reproductive performance of gilts. Appl. Anim. Behav. Sci. 25, 85-95.
Henderson, N. D. (1968). The confounding effects of genetic variables in early experience research: Can we ignore them? Dev. Psychobiol. 1, 146-152.
Hennessy, M. G., and Levine, S. (1978). Sensitive pituitary adrenal responsiveness to varying intensities of psychological stimulation. Physiol. Behav. 21, 295-297.
Herrick, C. J. (1910). The evolution of intelligence and its organs. Science. 31, 7-18.
Herrick, F H. (1908). The relation of instinct to intelligence in birds. Science. 27, 847-850.
Hirsh, J. (1963). Behavior genetics and individuality understood. Science. 142, 1436-1442.
Hirsh, J., Lindley, R. H., and Tolman, E. C. (1955). An experimental test of an alleged sign stimulus. J. Comp. Physiol. Psychol. 48, 278-280.
Holmes, J. H. G., Itobinson, D. W, and Ashmore, C. R. (1972). Blood lactic acid and behavioral cattle with hereditary muscular hypertrophy J. Anim. Sci. 55,1011-1014.
Hubel, D. H., and Wiesel, T. N. (1970). J. Physiol. (London) 206, 419.
Huck U. W., and Price, E. 0. (1975). Differential effects of environmental enrichment on the open-field behavior of wild and domestic Norway rats. J. Comp. Physiol. Psychol. 89,892-898.
Huxley, T. H. (1874). On the hypothesis that animals are automata, and its history. In "Collected Essays, Vol.1. Methods and Results: Essays," p. 218. (Published in 1901 by Macmillan, London.)
Isaac, E. (1970). "Geography of Domestication." Prentice-Hall, Englewood Cliffs, N.J.
Jones, R. B. (1984). Experimental novelty and tonic immobility in chickens (Gallus domesticus). Behav. Processes 9, 255-260.
Kagan,J., Reznick,J. S., and Snidman, N. (1988). Biological bases of childhood shyness. Science. 240, 167-171.
Keeler, C., Mellinger, T., Fromm, E., and Wade, L. (1970). Melanin. Adrenalin and the legacy of fear. J. Hered. 61, 81-88.
Kemble E. D., Blanchard, D. C., Blanchard, R.J., and Takushi, R. (1984). Taming in wild rats following medial amygdaloid lesions. Physiol. Behav. 32, 131-134.
Klien, E., Steinberg, S. A., Weiss, S. R. B., Matthews, D. M., and Uhde, T. W. (1988). The relationship between genetic deafness and fear-related behaviors in nervous pointer dogs. Physiol. Behav. 43, 307-312.
Konig, M., Zimmer, A. M., Steiner, H., Holmes, P. V., Crawley J. N., Brownstein, M.J., and Zimmer, A. (1996). Pain responses, anxiety and aggression in mice deficient in preproenkephalin. Nature (Landau) 383, 535-538.
Krushinski, L. V (1960). In "Animal Behavior. Its Normal and Abnormal Development" (J. Wortis, ed.). International Behavioural Sciences Service, Consultants Bureau, New York. (Original Russian version published by Moscow University Press).
Kruuk, H. (1972). "The Spotted Hyena:" University of Chicago Press, Chicago.
Lambooij, E., and van Putten, G. (1993). Transport of pigs. In "Livestock Handling and Transport" (T. Grandin, ed.). CAB International, Wallingford, UK.
LeDoux, J. E. (1992). Brain mechanisms of emotion and emotional learning. Curr. Opin. Neurobiol. 2(2), 191-197.
LeDoux, J. E., Iwata, J., Ciccheti, P., and Reis, D.J. (1988). Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J. Neurosci. 8, 2517-2529.
LeDoux, J. E., Ciccheti, P., Xagoraris, A., and Romanski, L. M. (1990). The lateral amygdaloid nucleus; sensory interface of the amygdala in fear conditioning. J. Neurosci. 10, 1062-1069.
Lesch, K. P, Bengel, D., Heils, A., Sabol, S. Z., Greenburg, B. D., Petri, S., Benjamin, J., Muller, C. R., Hamer, D. H., and Murphy, D. L. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene-regulatory region. Science 274, 1527-1551.
Levine, S. (1968). Influence of infantile stimulation on the response to stress during preweaning development. Dev. Psychobiol. 1(1), 67-70.
Levine, S., Haltmeyer, G. C., Karas, G. G., and Denenburg, V. H. (1967). Physiological and behavioral effects of infantile stimulation. Physiol. Behav. 2, 55-59.
Lorenz, K. Z. (1939). Vergleichende Verhaltensforschung. Zool. Anz., Suppl. 12, 69-109.
Lorenz, K. Z. (1965). "Evolution and Modification of Behavior." University of Chicago Press, Chicago.
Lorenz, K. Z. (1981). "The Foundations of Ethology." Springer-Verlag. New York.
Mahut, H. (1958). Breed differences in the dog's emotional behavior. Can. J. Psychol. 12(1), 35-44.
Manuck, S. B., and Schaefer, D. C. (1978). Stability of individual differences in cardiovascular reactivity. Physiol. Behav. 21, 675-678.
Matheson, B. K., Branch, B.J., and Taylor, A. N. (1971). Effects of amygdaloid stimulation on pituitary-adrenal activity in conscious cats. Brain Res. 32, 151-167.
Mayr, E. (1974). Behavioral programs and revolutionary strategies. Am. Sci. 62, 650-659.
Melton, D. A. (1991). Pattern formation during animal development. Science 252, 234-241.
Melzack, R., and Burns, S. K. (1965). Neurophysiological effects of early sensory restriction. Exp. Neurol. 13, 163-175.
Metfessel, M. (1935). Roller canary song produced without learning from external source. Science 81,470.
Moberg, G. P, and Wood, V. A. (1982). Effects of differential rearing on the behavioral and adrenocortical response of lambs to a novel environment. Appl. Anim. Ethol. 8, 269-279.
Mueller, H. C., and Parker, P. (1980). Cardiac responses of domestic chickens to hawk and goose models. Behav. Processes 7, 255-258.
Mundinger, P. C. (1995). Behavior genetic analysis of canary song; interstrain differences in sensory learning and epigenetic rules. Anim. Behav. 50, 1491-1511.
Murphy, L. B. (1977). Responses of domestic fowl to novel food and objects. Appl. Anim. Ethol. 3, 335-349.
Murphey, R. M., Moura Duarte, F. A., Coelho Novaes, W., and Torres Penedo, M. C. (1980a). Age group differences in bovine investigatory behavior. Dev Psychobiol. 14(2), 117-125.
Murphey, R. M., Moura Duarte, F. A., and Torres Penedo, M. C. (1980b). Approachability of bovine cattle in pastures: Breed comparisons and a breed X treatment analysis. Behav. Genet. 10, 171-181.
Murphey R. M., Moura Duarte, F. A., and Torres Penedo, M. C. (1981). Responses of cattle to humans in open spaces: Breed comparisons and approach-avoidance relationships. Behav. Genet. 11(1), 37-48.
Nottebohm, F. (1970). Ontogeny of bird song. Science 167, 950-956.
Nottebohm, F. (1977). Asymmetries in neural control of vocalization in the canary In "Lateralization of the Nervous System" (S. Harnard, ed.). Academic Press, New York and London.
Nottebohm, F. (1979). Origins and mechanisms in the establishment of cerebral dominance. In "Handbook of Behavioral Neurobiology" (M. Gazzaniza, ed.). Plenum, New York.
Nottebohm, F., Stokes, T. M., and Leonard, C. M. (1976). Central control of song in the canary (Serinus canaria). J. Comp. Neurol. 165, 457-486.
Nowicki, S., and Marler, P (1988). How do birds sing? Music Percept. 5, 391-421.
Ott, R. S. (1996). Animal selection and breeding techniques that create diseased populations and compromise welfare. J. Am. Vet. Med. 208, 1969-1974.
Parsons, P. A. (1988). Behavior, stress and variability. Behav. Genet. 18(3), 293-308.
Plomin, R., and Daniels, D. (1987). Why are children in the same family so different from one another? Behav. Brain Sci. 10, 1-60.
Popova, N. K., Voitenko, N. N., and Trut, F. N. (1975). Changes in serotonin and 5-hydroindoleacetic acid content in the brain of silver foxes under selection for behavior. Proc. Acad. Sci. USSR 233, 1498-1500 (in Russian).
Poulsen, H. (1959). Song learning in the domestic canary. Z. Tierpsychol. 16, 173-178.
Price, E. 0. (1984). Behavioral aspects of animal domestication. Q. Rev. Biol. 59, 1-32.
Price, E. 0., and Loomis, S. (1973). Maternal influence on the response of wild and domestic Norway rats to a novel environment. Dev. Psychobiol. 6, 203-208.
Reese, W. G., Newton,J. E. 0., and Angel C. (1983) A canine model of psychopathology In "Psychosomatic Medicine" (A. J. Krakowski, and C. P. Kimball eds.) pp. 25-31. Plenum, New York.
Richter, C. P. (1952). Domestication of the Norway rat and its implications for the study of genetics of man. Am.J. Hum. Genet. 4, 273-285.
Richter, C. P. (1954). The effects of domestication and selection on the behavior of the Norway rat. J. Nat. Cancer Inst. (U.S.) 15, 727-738.
Rogan, M. T., and LeDoux,J. E. (1996). Emotion: Systems, cells and synaptic plasticity. Cell (Cambridge, Moss.) 83, 369-475.
Royce, J. R., Carran, A., and Howarth, E. (1970), Factor analysis of emotionality in ten strains of inbred mice. Multidisciplinary Res. 5, 19-48.
Schaible, R. (1963). Clonal distribution of melanocytes in piebald spotting and variegated mice. J. Explor. Zool. 172, 181-200.
Schroeder, C. (1914). Thinking animals. Nature (London) 94, 426-427.
Schultz, D. (1965). "Sensory Restriction." Academic Press, New York.
Scott, J. P, and Fuller,J. L. (1965). "Genetics and the Social Behavior of the Dog." University of Chicago Press, Chicago.
Setckleiv J.. Skaug, O. E., and Kaada, B. R. (1961). Increase of plasma 17-hydroxy-corticosteroids by cerebral cortical and amagdaloid stimulation in the cat. J. Endocrinol. 22, 119-126.
Simons, D., and Land, P. (1987). Early experience of tactile stimulation influences organization of somatic sensory cortex. Nature (London) 326, 694-697.
Skinner, B. F. (1958). "Behavior of Organisms." Appleton-Century-Crofts, New York.
Skinner, M. P. (1922). The pronghorn. J. Mammal. 3, 82-106.
Sluyter, F., Bult, A., Lynch, C. B., VanOortmerssen, G. A., and Kookhaus,J. S. (1995). A comparison between house mouse lines selected for attack latencies or nest building: Evidence for a genetic basis of alternative behavioral strategies. J. Comp. Physiol. Psychol. 91, 649-661.
Steinberg, S. A., Klien, E., Killens, R. L., and Udhe, T. W. (1994). Inherited deafness among nervous pointer dogs. J. Hered. 85, 56-59.
Stephens, D. B., and Toner, J. N. (1975). Husbandry influences on some physiological parameters of emotional responses in calves. Appl. Anim. Ethol. 1, 233-243.
Tinbergen, N. (1948). Social releasers and the experimental method required for their study. Wilson Bull. 60, 6-52.
Tinbergen, N. (1951). "The Study of Instinct." Oxford University Press, New York (reprinted 1961).
Tulloh, N. M. (1961). Behavior ofcattle in yards II. A study of temperament. Anim. Behav. 9, 25-30.
Vita, C., Savolainen, P., Maldonado, J. E., Amorim, I. R., Rice,J. E., Honeycutt, R. L., Crandall, K. A., Lundeberg, J., and Wayne, R. K. (1997). Multiple and ancient origins of the domestic dog. Science 276, 1687-1689.
Voisinet, B. D., Grandin, T., Tatum, J. D., O'Conner, S. F, and Struthers, J. (1997). Feedlot cattle with calm temperaments have higher average daily gains than cattle with excitable temperaments. J. Anim. Sci. 75, 892-896.
Voisinet, B. D., Grandin, T., O'Connor, S. F, Tatum.J. D., and Deesing, M.J. (1997). Bos-indicus cross feedlot cattle with excitable temperaments have tougher meat and a higher incidence of borderline dark cutters. Meat Sci. (In press.)
Walsh, R. N.. and Cummins, R. A. (1975). Mechanisms mediating the production of environmentally induced brain changes. Psychol. Bull. 82, 986-1000.
Watson, J. B., (1930). "Behaviorism." W. W. Norton, New York.
Whitman, C. 0. (1898). "Animal Behavior," Biol. Lec. Marine Biological Laboratory, Woods Hole, MA.
Widowski, T. M., and Curtis, S. E. (1989). Behavioral responses of periparturient sows and juvenile pigs to prostaglandin F2a. J. Anim. Sci. 67, 3266-3276.
Wood-Gush, D. G. M., Beilharz, R. G. (1983). The enrichment of a bare environment for animals in confined conditions. Appl. Anim. Ethol. 10, 209.
Wood-Gush, D. G. M., and Vestergaard, K. (1991). The seeking of novelty and its relation to play. Anim. Behav. 42, 599-606.
Wright, S. (1922). The effects of inbreeding and crossbreeding on guinea pigs. U.S. Dep. Agric. Bull. 1090.
Wright, S. (1978). The relation of livestock breeding to theories of evolution. J. Anim. Sci. 46(5), 1192-1200.
Yeakel, E. H., and Rhoades, R. P. (1941). A comparison of the body and endocrine gland (adrenal, thyroid and pituitary) weights of emotional and nonemotional rats. Endocrinology (Baltimore). 28, 357-340.
Yerkes, R. M. (1905).J. Comp. Neurol. Psychol. 15, 137.
Zeuner, F. E. (1963). "A History of Domesticated Animals." Harper & Roy, New York.
After a quick scan of the area for adult wolves, he cautiously approaches. The pups are all clearly frightened and huddle close together as he kneels in front of the den . . . all except one. The darkest colored pup shows no fear of the man's approach. "Come here you little predator! Let me take a look at you, he says. After a mutual bout of petting by the man and licking by the wolf, the man suddenly has an idea. "If I take you home with me tonight, maybe mom and the kids will forgive me for not catching dinner . . . again."
INTRODUCTION
The opening paragraphs depict a hypothetical scenario of man first taming the wolf. Although we have tried to make light of this event, the fact is that no one knows exactly how or why this first encounter took place. The earliest archeological estimate indicates that it occurred in the late Glacial period, approximately 14,000 years BC (Boessneck, 1985). Another scenario is that wolves domesticated themselves. The presumption is that calm wolves with low levels of fear were likely to scavenge near human settlements. Both Coppinger and Smith (1983) and Zeuner (1963) suggest that wild species which later became domesticants started out as camp followers. Some wolves were believed to have scavenged near human settlements or followed hunting parties; wild cattle supposedly invaded grain fields, and wild cats may have invaded grainaries while hunting for mice. However, the most recent evidence obtained by sequencing mitochondrial DNA of 67 dog breeds and wolves from 27 localities indicates that dogs may have diverged from wolves over 100,000 years ago (Vita et al., 1997).
In any event, wolves kept for companions had to be easy to handle and socialize to humans. Within a few generations, early humans may have turned wolves into dogs by selecting and breeding the tamest ones. Thousands of years ago, humans were not aware that behavior in animals was heritable. However, even today people who raise dogs, horses, pigs, cattle, or chickens notice differences in the behavior of the offspring. Some animals are friendly and readily approach people, while others may be shy and nervous.
GENETIC EFFECTS OF DOMESTICATION
Price (1984) defined domestication as a process by which a population of animals becomes adapted to man and the captive environment by some combination of genetic changes occurring over generations and environmentally induced developmental events recurring during each generation:' In long-term selection experiments designed to study the consequences of selection for the tame" domesticated type of behavior, Belyaev (1979) and Belyaev et al. (1981) studied foxes reared for their fur. The red fox (Vulpes fulva) has been raised on seminatural fur farms for over 100 years and was selected for fur traits and not behavioral traits. However, they demonstrate three distinctly different characteristic responses to man. Thirty percent were extremely aggressive toward man, 60% were either fearful or fearfully aggressive, and 10% displayed a quiet exploratory reaction without either fear or aggression. The objective of this experiment was to breed animals similar in behavior to the domestic dog. By selecting and breeding the tamest individuals, 20 years later the experiment succeeded in turning wild foxes into tame, border collie-like fox-dogs. The highly selected "tame" population of (fox-dog) foxes actively sought human contact and would whine and wag their tails when people approached (Belyaev 1979). This behavior was in sharp contrast to wild foxes which showed extremely aggressive and fearful behavior toward man. Keeler et al. (1970) described this behavior:
Vulpes fulva (the wild fox) is a bundle of jangled nerves. We had observed that when first brought into captivity as an adult, the red fox displays a number of symptoms that are in many ways similar to those observed in psychosis. They resemble a wide variety of phobias, especially fear of open spaces, movement, white objects, sounds, eyes or lenses, large objects, and man, and they exhibit panic, anxiety, fear, apprehension and a deep trust of the environment~ They are 1) catalepsy-like frozen positions, accompanied by blank stares; 2) fear of sitting down; 3) withdrawal; 4) runaway flight reactions; and 5) aggressiveness. Sometimes the strain of captivity makes them deeply disturbed and confused, or may produce a depression- like state. Extreme excitation and restlessness may also be observed in some individuals in response to many changes in the physical environment. Most adult red foxes soon after capture break off their canine teeth on the mesh of our expanded metal cage in their attempts to escape. A newly captured fox is known to have torn at the wooden door of his cage in a frenzy until he dropped dead from exhaustion.
Although the stress of domestication is great, Belyaev (1979) and Belyaev et al. (1981) concluded that selection for tameness was effective in spite of the many undesirable characteristics associated with tameness. For example, the tame foxes shed during the wrong season and developed black and white patterned fur, and changes were found in their hormone profiles. This means that the monoestrus (once a year) cycle of reproduction was disturbed and the animals would breed at any time of the year. Furthermore, changes in behavior occurred simultaneously with changes in tail position and ear shape, and the appearance of a white muzzle, forehead blaze, and white shoulder hair. The white color pattern on the head is similar to many domestic animals (Belyaev 1979) (Figs. 1.1 and 1.2). The most dog-like foxes had white spots and patterns on their heads, drooping ears, and curled tails and looked more like dogs than the foxes that avoided people. The behavioral and morphological (appearance) changes were also correlated with corresponding changes in the levels of gender hormones. The tame foxes had higher levels of the neurotransmitter serotonin (Popova et al., 1975). Serotonin is known to inhibit some kinds of aggression (Belyaev, 1979), and serotonin ~levels are increased in the brains of people who take Prozac (fluoxetine).
The study of behavioral genetics can help explain why selection for calm temperament was linked to physical and neurochemical changes in Belyaev's foxes. Behavior geneticists and animal scientists are interested in understanding effects on behavior due to genetic influences or those which are due to environment and learning.
A BRIEF HISTORICAL REVIEW OF ANIMAL BEHAVIOR STUDY
This historical review is not intended to he comprehensive; our objective is to discuss some of the early discoveries that are important for our current understanding of animal behavior, with particular emphasis on genetic influence on behavior in domestic animals.
Early in the 17th century, Descartes came to the conclusion "that the bodies of animals and men act wholly like machines and move in accordance with purely mechanical laws" (in Huxley 1874). After Descartes, others undertook the task of explaining behavior as reactions to purely physical, chemical, or mechanical events. For the next three centuries scientific thought on behavior oscillated between a mechanistic view that animals are '~automatons" moving through life without consciousness or self-awareness and an opposing view that animals had thoughts and feelings similar to those of humans.
In "On the Origin of the Species" (1859), Darwin's ideas about evolution began to raise serious doubts about the mechanistic view of animal behavior. He noticed that animals share many physical characteristics and was one of the first to discuss variation within a species, both in their behavior and in their physical appearance. Darwin believed that artificial selection and natural selection were intimately associated (Darwin, 1868) and cleverly outlined the theory of evolution without any knowledge of genetics. In "The Descent of Man" (1871) Darwin concluded that temperament traits in domestic animals are inherited. He also believed, as did many other scientists of his tune, that animals have subjective sensations and could think. Darwin wrote: "The differences in mind between man and the higher animals, great as it is, is certainly one of degree and not of kind."
Other scientists realized the implications of Darwin's theory on animal behavior and conducted experiments investigating instinct. Herrick (1908) observed the behavior of wild birds in order to determine, first, how their instincts are modified by their ability' to learn, and second, the degree of intelligence they attain. On the issue of thinking in animals, Schroeder (1914) concluded: ~The solution, if it ever comes, can scarcely fail to illuminate, if not the animal mind, at least that of man." It is evident that by the end of the 19th century, scientists who studied animal behavior in natural environments learned that the mechanical approach could not explain all behavior.
Behaviorism
During the middle of the 20th century', scientific thought again reverted to the mechanical approach and behaviorism reigned throughout America. The behaviorists ignored both genetic effects on behavior and the ability of animals to engage in flexible problem solving. The founder of behaviorism, J. B. Watson (1930), stated that differences in the environment can explain all differences in behavior." He did not believe that genetics had any effect on behavior. In The Behavior of Organisms]' the psychologist B. F Skinner (1958) wrote that all behavior could be explained by the principles of stimulus-response and operant conditioning.
The first author visited with Dr. Skinner at Harvard University in 1968. Skinner responded to a question from her about the need for brain research by saying, '~We don't need to know about the brain because we have operant conditioning" (T. Grandin, personal communication, 1968). Operant conditioning uses food rewards and punishments to train animals and shape their behavior. In a simple Skinner box experiment, a rat can be trained to push a lever to obtain food when a green light turns on, or to push a lever very quickly to avoid a shock when a red light appears. The signal light is the '~conditioned stimulus." Rats and other animals can be trained to perform a complex sequence of behaviors by chaining together a series of simple operant responses. Skinner believed that even the most complex behaviors can be explained as a series of conditioned responses.
However, a rat's behavior is very limited in a Skinner box. It's a world with very little variation, and the rat has little opportunity to use its natural behaviors. It simply learns to push a lever to obtain food or prevent a shock. Skinnerian principles explain why a rat behaves a certain way in the sterile confines of a 30 x 30-cm Plexiglas box, but they don't reveal much about the behavior of a rat in the local dump. Outside of the laboratory, a rat's behavior is more complex.
Instincts versus Learning
Skinner's influence on scientific thinking slowed a bit in 1961 following the publication of ~The Misbehavior of Organisms" by Brelands and Brelands. This paper described how Skinnerian behavioral principles collided with instincts. The Brelands were trained Skinnerian behaviorists who attempted to apply the strict principles of operant conditioning to animals trained at fairs and carnivals. Ten years before this classic paper, the Brelands (1951) wrote, we are wholly affirmative and optimistic that principles derived from the laboratory can be applied to the extensive control of animal behavior under non laboratory condition]' However, by 1961, after training more than 6000 animals as diverse as reindeer, cockatoos, raccoons, porpoises, and whales for exhibition in zoos, natural history museums, department store displays, fair and trade convention exhibits, and television, the Brelands wrote a second article featured in the American Psychologist (1961), which stated, our backgrounds in behaviorism had not prepared us for the shock of some of our failures."
One of the failures occurred when the Brelands tried to teach chickens to stand quietly on a platform for 10 to 12 seconds before they received a food reward. The chickens would stand quietly on a platform in the beginning of training; however, once they learned to associate the platform with a food reward, half (50%) started scratching the platform, and another 25% developed other behaviors, such as pecking the platform. The Brelands salvaged this disaster by developing a wholly unplanned exhibit involving a chicken that turned on a juke box and danced. They first trained the chickens to pull a rubber loop which turned on some music. When the music started, the chickens would jump on the platform and start scratching and pecking until the food reward was delivered. This exhibit made use of the chicken's instinctive food-getting behavior. The first author remembers as a teenager seeing a similar exhibit, at the Arizona State Fair, of a piano-playing chicken in a little red barn. The hen would peck the keys of a toy piano when a quarter was put in the slot and would stop when the food came down the chute. This exhibit also worked because it was similar to a Skinner box in the laboratory.
The Brelands experienced another classic failure when they tried to teach raccoons to put coins in a piggy bank. Because raccoons are adept at manipulating objects with their hands, this task was initially easy. As training progressed, however, the raccoons began to rub the coins before depositing them in the bank. This behavior was similar to the washing behavior raccoons do as instinctive food-getting behavior. The raccoons at first had difficulty letting go of the coin and would hold and rub it. However, when the Brelands introduced a second coin, the raccoons became almost impossible to train. Rubbing the coins together 'in a most miserly fashion]' the raccoons got worse and worse as time went on. The Brelands concluded that the innate behaviors were suppressed during the early stages of training and sometimes long into the training, but as training progressed, instinctive food-getting behaviors gradually replaced the conditioned behavior. The animals were unable to override their instincts and thus a conflict between conditioned and instinctive behaviors occurred.
Ethology
While Skinner and his fellow Americans were refining the principles of operant conditioning on thousands of rats and mice, ethology was being developed in Europe. Ethology is the study of animal behavior in natural environments and the primary concern of the ethologists is instinctive or innate behavior (Eibl-Eibesfeldt and Kramer, 1958). Essentially, ethologists believe that the secrets to behavior are found in the animals genes and in the way the genes have been modified during evolution to deal with particular environments. The ethological trend originated with Whitman (1898), who regarded instincts as congenital reactions which are so constant and characteristic for each species that, like morphological structures, they may he of taxonomic significance. A similar opinion was held by Heinroth (1918). He trained newly hatched fledglings in isolation from adult birds of their own species and found that instinctive movements such as preening, shaking, and scratching were performed by young birds without observing other birds.
Understanding the mechanisms and programming that result in innate behavioral patterns and the motivations behind why animals behave the way they do is the primary focus of ethologists. Konrad Lorenz (1939, 1965, 1981) and Niko Tinbergen (1948, 1951) cataloged the behavior of many animals in their natural environments. Together they developed the ethogram. An ethogram is a complete listing of all the behaviors that an animal performs in its natural environment. The ethogram includes both innate and learned behaviors.
An interesting contribution to ethology came from studies on egg-rolling behavior in the greylag goose (Lorenz, 1965, 1981). He observed that when a brooding goose notices an egg outside her nest, an innate instinctive program is triggered to retrieve it. The goose fixates on the egg, rises to extend her neck and bill out over it, then gently rolls it back to the nest. This behavior is performed in a highly mechanical way If the egg is removed as the goose begins to extend her neck, she still completes the pattern of rolling the nonexistent egg back to the nest. Lorenz (1939) and Tinbergen (1948) termed this a 'fixed action pattern." Remarkably, Tinbergen also discovered that brooding geese can be stimulated to perform egg rolling on such items as beer cans and baseballs. The fixed action pattern of rolling the egg back to the nest can be triggered by anything outside the nest that even marginally resembles an egg. Tinbergen realized that geese possess a genetic-releasing mechanism for this fixed action pattern. Lorenz and Tinbergen called the object that triggers the release of a fixed action pattern "sign stimuli." When a mother bird sees the gaping mouth of her young, it triggers the maternal feeding behavior and the mother feeds her young. The gaping mouth is another example of sign stimuli that acts as a switch and turns on the genetically determined program (Herrick, 1908; Tinbergen, 1951).
Ethologists also explained the innate escape response of newly hatched goslings. When goslings are tested with a cardboard silhouette in the shape of a hawk moving overhead, it triggers a characteristic escape response. The goslings will crouch or run. However, when the silhouette is reversed to look like a goose, there is no effect (Tinbergen, 1951). Several members of the research community doubted the existence of such a hard-wired instinct because other scientists failed to repeat these experiments (Hirsh et al., 1955). Recently Canty and Gould (1995) repeated the classic experiments and explained why the other experiments failed. In the first place, goslings only respond to the silhouette when they are under 7 days old. Second, a large silhouette which casts a shadow must be used; third, goslings respond to the perceived predator differently depending on the circumstances. For example, birds tested alone try to run away from the hawk silhouette and birds reared and tested in groups tend to crouch (Canty and Gould, 1995). Nevertheless, fear is likely to be the basis of the response. Ducklings were shown to have higher heart rate variability when they saw the hawk silhouette (Mueller and Parker, 1980). Research by Balaban (1997) indicates that species-specific vocalizations and head movements in chickens and quail are controlled by distinct cell groups in the brain. To prove this, Balaban transplanted neural tube cells from developing quail embryos into chicken embryos. Chickens hatched from the transplanted eggs exhibited species-specific quail songs and bobbing head movements.
Do similar fixed action patterns occur in mammals? Fentress (1973) conducted an experiment on mice which clearly showed that animals have instinctive species-specific behavior patterns which do not require learning. Day-old baby mice were anesthetized and had a portion of their front legs amputated. Enough of the leg remained that the mice could easily walk. The operations were performed before the baby mice had fully coordinated movements so there was no opportunity for learning. When the mice became adults, they still performed the species-specific face-washing behavior; normal mice close their eye just prior to the foreleg passing over the face, and in the amputees the eye still closed before the nonexistent paw hit it. The amputees performed the face- washing routine as if they still had their paws. Fentress (1973) concluded that the experiment proved the existence of instincts in mammals.
The Science of Behavior Today
Two years after the Brelands article, Jerry Hirsh (1963) at the University of Illinois wrote a paper emphasizing the importance of studying individual differences. He wrote, "Individual differences are no accident. They are generated by properties of organisms as fundamental to behavior science as thermodynamic properties are to physical science." Today, scientists recognize the contributions of both the Skinnerian and the ethologists approach to understanding behavior Modern neuroscience supports Darwin's view on behavior. Bird and mammal brains are constructed with the same basic design. They all have a brain stem, limbic system, cerebellum, and cerebral cortex. The cerebral cortex is the part of the brain used for thinking and flexible problem solving. The major difference between the brains of people and animals is in the size and complexity of the cortex. Primates have a larger and more complex cortex than a dog or a pig; pigs have a more complex cortex than a rat or a mouse. Furthermore, all animals possess innate species-specific motor patterns which interact with experience and learning in the formation of behavior. Certain behaviors in both wild and domestic animals are governed largely by innate (hard-wired) programs; however, experiencing and learning are the most important factors in other behaviors.
A basic principle to remember is that animals with large, complex brains are less governed by innate behavior patterns. For example, bird behavior is governed more by instinct than that of a dog, whereas an insect would have more hard-wired behavior patterns than that of a bird. This principle was clear to Yerkes (1905) who wrote:
Certain animals are markedly plastic or voluntary in their behavior, others are as markedly fixed or instinctive. In the primates plasticity has reached its highest known stage of development; in the insects fixity has triumphed, instinctive action is predominant. The ant has apparently sacrificed adapt-ability to the development of ability to react quickly, accurately and uniformly in a certain way Roughly, animals might he separated into two classes: those which are in high degree capable of immediate adaptation to their conditions, and those that are apparently automatic since they depend upon instinct tendencies to action instead of upon rapid adaptation.
INTERACTIONS BETWEEN GENETICS AND EXPERIENCE
Some behavior patterns are similar between different species, and some are found only in a particular species. For example, the neural programs that enable animals to walk are similar in most mammals (Melton, 1991). On the other hand, courtship rituals in birds are very species-specific (Nottebohm, 1977). Some innate behavior patterns are very rigid and experience has little effect on them; other instinctive behaviors can be modified by learning and experience. The flehmann, or lip curl response of a bull when he smells a cow in estrus, and the kneel-down (lordois) posture of a rat in estrus are examples of behaviors that are rigid. Suckling of the mother by newborn mammals is another example of a hard-wired behavioral system. Suckling behavior does not vary Newborn mammals suckle almost anything put in their mouth.
An example of an innate behavior that is affected by learning is burrowing behavior in rats. Boice (1977) found that wild Norway rats and albino laboratory rats both dig elaborate burrows. Learning has some effect on the efficiency of burrowing, but the configuration of the burrows was the same for both the wild and domestic rats. The albino laboratory rats dug excellent burrows the first time they were exposed to an outdoor pen. Nest building in sows is another example of the interaction between instinct and learning. When a sow is having her first litter, she has an uncontrollable urge to build a nest. Nest building is hard-wired and hormonally driven because prostaglandin F2a injections will induce it in sows (Widowski and Curtis, 1989). However, sows earn from experience how to build a better nest with each successful litter.
Other behaviors are almost entirely learned. Some seagulls learn to drop shellfish on rocks to break them open, while others drop them on the road and let cars break them open (Grandin, 1995). Many animals ranging from apes to birds use tools to obtain food. Griffin (1994) and Dawkins (1993) provide many examples of complex learned behaviors and flexible problem solving in animals.
Innate behaviors used for finding food, such as grazing, scavenging, or hunting, are more dependent on learning than behaviors used to consume food. Mating behavior, nesting, eating, and prey-killing behaviors tend to be governed more by instinct (Gould, 1977). The greater dependence on learning to find food makes animals in the wild more flexible and able to adapt to a variety of environments. Behaviors used to kill or consume food can be the same in any environment. Mayr (1974) called these different behavioral systems "open" or "closed" to the effects of experience. A lion hunting her prey is an example of an open system. The hunting female lion recognizes her prey from a distance and carefully stalks her approach. Herrick (1910) wrote, "the details of the hunt vary every time she hunts; therefore, no combination of simple reflex arcs laid down in the nervous system will be adequate to meet the infinite variations of the requirements for obtaining food:'
Complex Interactions
Some of the interactions between genetics and experience have very complex effects on behavior. In birds, the chaffinch learns to sing its species-specific song even when reared in a sound-proof box where it is unable to hear other birds (Nottebohm, 1970, 1979). However, when chaffinches are allowed to hear other birds sing, they develop a more complex song. The basic pattern of canary song emerges even in the absence of conspecific (flock-mate) auditory models (Metfessel, 1935; Poulsen, 1959). Young canaries imitate the song of adult canaries they can hear, and when reared in groups they develop song patterns that they all share (Nottebohm, 1977). Many birds, such as the white crowned sparrow chaffinch, and parrot, can develop local song dialects (Nottebohm et al., 1976). Sparrows are able to learn songs by listening to recordings of songs with either pure tones or harmonic overtones. Birds trained with harmonic overtones learned to sing songs with harmonic overtones, but 1 year later, 85% of their songs reverted back to innate pure tone patterns (Nowicki and Marler, 1988). Further experiments by Mundinger (1995) attempted to determine the relative contribution of genetics and learning in bird song. Inbred lines of roller and border canaries were used in this study along with a hybrid cross of the two. The rollers were cross fostered to border hens and vice versa to control for effects of maternal behavior. The roller and border males preferred to sing innate song patterns instead of copying their tutors. The hybrids preferred to learn some of both songs. Furthermore, canaries are capable of learning parts of an alien song but have a definite preference for their own songs. Comparing these animals to those in Brelands and Brelands (1961) exhibits, birds can be trained to sing a different song, but genetically determined patterns have a strong tendency to override learning. In reviewing all this literature, it became clear that innate patterns in mammals can be overridden. Unfortunately the animals tend to revert back to innate behavior patterns.
THE PARADOX OF NOVELTY
Novelty is anything new or strange in an animal's environment. Novelty is a paradox because it is both fear-provoking and attractive. Paradoxically it is most fear-provoking and attractive to animals with a nervous, excitable temperament. Skinner (1922) wrote that a flighty animal such as the pronghorn antelope will approach a person lying on the ground waving a red flag. Einarsen (1948) further observed that some wild animals will approach various large, dangerous objects such as a power steam shovel. In more recent studies, Kruuk (1972) also observed attraction and reaction to novelty in Thompson's gazelles in Africa. In small groups, Thompson's gazelles are most watchful for predators (Elgar, 1989). Animals that survive in the wild by flight are more attentive to novelty than more placid animals. Gazelles can also distinguish between a dangerous hunting predator and one that is not hunting. The most dangerous predators attract the highest degrees of attraction in the Thompson's gazelle. They often move close to a cheetah when the cheetah is not hunting. Furthermore, when predators walk through a herd of Thompson's gazelles, the size of the flight zone varies depending on the species of predator.
Reaction to Novelty
Confronted with sudden novelty, highly reactive animals are more likely to have a major fear reaction. Examples of sudden novelty include being placed in a new cage, transport in a strange vehicle, an unexpected loud noise, or being placed in an open field. Using various experimental environments, Hennessy and Levine (1978) found that rats show varying degrees of stress and stress hormone levels proportional to the degree of novelty of the environment they are placed in; a glass jar is totally novel in appearance compared to the lab cage to which the animal was accustomed. Being placed in a glass jar was more stressful for rats than a clean lab cage with no bedding.
Livestock and Poultry Reaction to Novelty
Studies of the reaction to novelty in farm animals have been conducted by Moberg and Wood (1982), Stephens and Toner (1975), and Dantzer and Mormede (1983). When calves are placed in an open field test arena that is very dissimilar from their home pen, they show the highest degrees of stress (Dantzer and Mormede, 1983). Calves raised indoors were more stressed by an outdoor arena and calves raised outdoors were more stressed by an indoor arena. The second author is painfully familiar with similar responses in horses. When horses are taken to the mountains for the first time, a well-trained riding horse that is accustomed to many different show rings may panic when it sees a butterfly or hears a twig snapping on a mountain trail.
Genetic Factors and the Need for Novelty
In mammals and birds, normal development of the brain and sense organs requires novelty and varied sensory input. Nobel prize winning research of Hubel and Wiesel (1970) showed that the visual system is permanently damaged if kittens do not receive varied visual input during development. When dogs are raised in barren and nonstimulating environments they are also more excitable (Walsh and Cummins, 1975; Melzak and Burns, 1965). Schultz (1965) stated, "when stimulus variation is restricted central regulation of threshold sensitivities will function to lower sensory thresholds." Krushinski (1960) studied the influence of isolated conditions of rearing on the development of passive defense reactions (fearful aggression) in dogs and found that the expression of a well-marked fear reaction depends on the genotype of the animal. Airedales and German shepherds were reared under conditions of freedom (in homes) and in isolation (in kennels). Krushinski (1960) found that the passive defense reaction developed more acutely and reached a greater degree in the German shepherds kept in isolation compared to the Airedales. In general, animals reared in isolation become more sensitive to sensory stimulation because the nervous system attempts to readjust for the previous lack of stimulation.
In an experiment with chickens, Murphy (1977) found that chicks from a flighty genetic line were more likely to panic when a novel ball was placed in their pen, but they were also more attracted to a novel food than birds from a calm line. Cooper and Zubeck (1958), and Henderson (1968) found that rats bred to be dull greatly improved in maze learning when housed in a cage with many different objects; however, enriched environments had little effect on the rats bred for high intelligence. Greenough and Juraska (1979) found that rearing rats in an environment with many novel objects improves learning and resulted in increased growth of dendrites, which are nerve endings in the brain.
Pigs raised in barren concrete pens also seek stimulation (Grandin, 1989a,b; Wood-Gush and Vestergaard, 1991; Wood-Gush and Beilharz, 1983). Piglets allowed to choose between a familiar object and a novel object prefer the novel object (Wood-Gush and Vestergaard, 1991). Pigs raised on concrete are strongly attracted to novel objects to chew on and manipulate. The first author has observed that nervous, excitable hybrid pigs often chew and bit vigorously on boots or coveralls. This behavior is less common in placid genetic lines of pigs.
Although hybrid pigs are highly attracted to novelty, tossing a novel object into their pen will initially cause a strong flight response. Compared to calm genetic lines, nervous-hybrid pigs pile up and squeal more when startled. Pork producers report that nervous, fast-growing, lean hybrid pigs also tail-bite other pigs more often than calmer genetic lines Of pigs. jail biting occurs more often when pigs are housed on a concrete slatted floor which provides no opportunity for rooting.
Strong attraction or strong reaction to novelty has also been observed by the first author in cattle. Cattle will approach and lick a piece of paper laying on the ground when they can approach it voluntarily (Fig. 1.3). However, the same piece of paper blowing in the wind may trigger a massive flight response. Practical experience by both authors suggests that highly reactive horses are more likely to engage in vices such as cribbing or stall weaving when housed in stalls or runs where they receive little exercise. Denied variety and novelty in their environments, highly reactive animals adapt poorly compared to animals from calmer genetic lines (Price, 1984).
In summary, in both wild and domestic animals novelty is both highly feared and necessary Novelty is most desirable when animals can approach it slowly. Unfortunately, novelty is also fear-provoking when animals are suddenly confronted with it.
TEMPERAMENT
In animals as diverse as rats, chickens, cattle, pigs, and humans, genetic factors influence differences in temperament (Murphey et al., 1980b Kagan et al., 1988; Grandin, 1993b; Fordyce et al., 1988; Fujita et al., 1994; Hemsworth et al., 1990; Broadhurst, 1975; Reese et al., 1983; Murphy, 1977; Tulloh, 1961; Blizard, 1971). Some individuals are wary and fearful and others are calm and placid. Boissy (1995) stated, fearfulness is a basic psychological characteristic of the individual that predisposes it to perceive and react in a similar manner to a wide range of potentially frightening events]' In all animals, genetic factors influence reactions to situations which cause fear (Davis, 1992; Murphey et al., 1980b; Kagan et al, 1988; Boissy and Bouissou, 1995); therefore, temperament is partially determined by an individual animal's fear response. Rogan and LeDoux (1996) suggest that fear is the product of a neural system that evolved to detect danger and that it causes an animal to make a response to protect itself. Plomin and Daniels (1987) found a substantial genetic influence on shyness (fearfulness) in human children. Shy behavior in novel situations is considered a stable psychological characteristic of certain individuals. Shyness is also suggested to be among the most heritable dimensions of human temperament throughout the life span.
In an experiment designed to control for maternal effects on temperament and emotionality, Broadhurst (1960) conducted cross-fostering experiments on Maudsley Reactive (MR) and Non Reactive (MNR) rats. These lines of rats are genetically selected for high or low levels of emotional reactivity The results showed that maternal effects were not great enough to completely mask the temperament differences between the two lines (Broadhurst, 1960). Maternal effects can affect temperament, but they are not great enough to completely change the temperament of a cross-fostered animal which has a temperament that is very different from that of the foster mother. In extensive review of the literature, Broadhurst (1975) examined the role of heredity in the formation of behavior and found that differences in temperament between rats persist when the animals are all raised in the same environment.
Measuring Fear-Based Behaviors
One method of testing fearfulness is the open field test (Hall, 1934). Sudden placement of an animal in an open field test arena is used to measure differences in fearfulness. Open field testing has shown differences in fearfulness between different genetic lines of animals. The test arena floor is usually marked in a grid to measure how much the animals walk around and explore. Huck and Price (1975) showed that domestic rats are less fearful and will walk round the open held more than wild rats. Price and Loomis (1973) explained that some genetic strains of rats are less fearful and explore an open field arena more than others. Eysenck and Broadhurst (1964) found that rodents with high emotional reactivity are more fearful and explore the open field less compared to placid genetic lines.
In their study of genetic effects on behavior, Fuller and Thompson (1978) found that "simply providing the same defined controlled environment for each genetic group is not enough. Conditions must not only be uniform for all groups, but also favorable to the development of the behavior of interest." For example, in wartime Russia, Krushinski (1960) investigated the ability of dogs to be trained for the antitank service or as trail dogs trained to track human scent. The dogs were tied to a spike driven into the ground, and the person who regularly looked after them would let them lick from a bowl of food and then summon the dog to follow the man as he retreated 10 to 15 meters. The dog's activity was measured with a pedometer for the next 2 minutes. The most active dogs were found to be the best antitank dogs. They were also fearless. In the antitank service, dogs were trained to run up to a tank and either run along side of it or penetrate under the caterpillars of the tank. In order to do this, the dogs had to overcome their natural fear of a tank moving toward them at high speed. The less active dogs (as measured by the pedometer) were found to make the best trailer dogs. They slowly followed a trail and kept their noses carefully to the scent while negotiating the corners and turns on the trail. The more active dogs trailed at too high a speed and often jumped the corners and turns in the trail, which sometimes resulted in switching to another trail.
Mahut (1958) demonstrated an example of differences in fear responses between beagles and terriers. When frightened, beagles freeze and terriers run around frantically In domestic livestock, measuring fear reactions during restraint or in an open field test has revealed differences in temperament both between breeds and between individuals within a breed (Grandin, 1993a; Tulloh, 1961; Dantzer and Mormede, 1983; Murphey et al., 1980b, 1981). The fearful, flighty animals become more agitated and struggle more violently when restrained for vaccinations and other procedures (Fordyce et al., 1988; Grandin, 1993a). Fear is likely to be the main cause of agitation during restraint in cattle, horses, pigs, and chickens. Genetic effects on behavior during transport, handling, and restraint of these animals are further discussed in Chapter 4.
Species Differences in Fear Reactions
In an open field test, frightened rodents often stay close to the arena walls, whereas frightened cattle may run around wildly and attempt to escape. Rodents stay close to the walls because they naturally fear open spaces, whereas cattle run around wildly because they fear separation from the herd. This is an example of differences between species in their response to a similar fear- provoking situation. Fear can be manifested in many different ways. For example, a frightened animal may run around frantically and try to escape in one situation, while in another situation the same animal may freeze or limit its movement. Chickens often freeze when handled by humans. Jones (1984) called this "tonic immobility." The chickens become so frightened that they cannot move. Forceful capture of wild animals can sometimes inflict fatal heart damage. Wildlife biologists call this capture myopathy In summary, much is known about the complex phenomenon of fear, but many questions still remain.
BIOLOGICAL BASIS OF FEAR
Genetics influences the intensity of fear reactions. Genetic factors can also greatly reduce or increase fear reaction in domestic animals (Price, 1984; Parsons, 1988; Flint et al., 1995). Research in humans has clearly revealed some of the genetic mechanisms which govern the inheritance of anxiety (Lesch et al., 1996). LeDoux (1992) and Rogan and LeDoux (1996) state that all vertebrates can be fear-conditioned. Davis (1992) recently reviewed studies on the biological basis of fear. Overwhelming evidence points to the amygdala as the fear center in the brain. A small bilateral structure located in the limbic system, the amygdala is where the triggers for flight or fight" are located. Electrical stimulation of the amygdala is known to increase stress hormones in rats and cats (Matheson et al., 1971; Setckleiv et al., 1961); destroying the amygdala can make a wild rat tame and reduce its emotionality (Kemble et al., 1984). Destroying the amygdala also makes it impossible to provoke a fear response in animals (Davis, 1992). Blanchard and Blanchard (1972) showed that rats lose all of their fear of cats when the amygdala is lesioned. Furthermore, when a rat learns that a signal light means an impending electric shock, a normal response is to freeze. Destroying the amygdala will eliminate this response (Blanchard and Blanchard, 1972; LeDoux et al., 1988, 1990). Finally, electrical stimulation of the amygdala makes humans feel fearful (Gloor et al., 1981). Animal studies also show that stimulation of the amygdala triggers a pattern of responses from the autonomic nervous system similar to that found in humans when they feel fear (Davis, 1992).
Heart rate, blood pressure, and respiration also change in animals when the flight or fight response is activated (Manuck and Schaefer, 1978). All these autonomic functions have neural circuits to the amygdala. Fear can be measured in animals by recording changes in autonomic activity In humans, Manuck and Schaefer (1978) found tremendous differences in cardiovascular reactivity in response to stress, reflecting a stable genetic characteristic of individuals.
Fearfulness and Instinct
Fearfulness and instinct can conflict. This principle was observed firsthand by the second author during his experience raising Queensland Blue Heeler dogs. Annie's first litter was a completely novel experience because she had never observed another dog giving birth or nursing pups. She was clearly frightened when the first pup was born and it was obvious that she did not know what the pup was; however, as soon as she smelled it her maternal instinct took over and a constant uncontrollable licking began. Two years later, Annie's daughter Kay had her first litter. Kay was more fearful than her mother and her highly nervous temperament overrode her innate licking program. When each pup was born Kay ran wildly around the room and would not go near them. The second author had to intervene and place the pups under Kay's nose; otherwise, they may have died. Kay's nervous temperament and fearfulness were a stronger motivation than her motherly instinct.
NERVOUS SYSTEM REACTIVITY CHANGED BY THE ENVIRONMENT
Raising young animals in barren environments devoid of variety and sensory stimulation will have an effect on development of the nervous system. It can cause an animal to be more reactive and excitable when it becomes an adult. This is a long-lasting, environmentally induced change in how the nervous system reacts to various stimuli. Effects of deprivation during early development are also relatively permanent. Melzak and Burns (1965) found that puppies raised in barren kennels developed into hyperexcitable adults. In one experiment the deprived dogs reacted with ~diffuse excitement" and ran around a room more than control dogs raised in homes by people. Presenting novel objects to the deprived dogs also resulted in diffuse excitement." Furthermore, the EEGs of the kennel-raised dogs remained abnormal even after they were removed from the kennel (Melzak and Burns, 1965). Simons and Land (1987) showed that the somatosensory cortex in the brains of baby rats will not develop normally if sensory input was eliminated by trimming their whiskers. A lack of sensory input made the brain hypersensitive to stimulation. The effects persisted even after the whiskers had grown back.
Development of emotional reactivity of the nervous system begins during early gestation. Denenberg and Whimbey (1968) showed that handling a pregnant rat can cause her offspring to be more emotional and explore less in an Open field compared to control animals. This experiment is significant because it shows that handling the pregnant mother had the opposite effect on the behavior of the infant pups. Handling and possibly stressing the pregnant mothers changed the hormonal environment of the fetus which resulted in nervous offspring. However, handling newborn rats by briefly picking them up and setting them in a container reduced emotional reactivity when the rats became adults (Denenberg and Whimbey 1968). The handled rats developed a calmer temperament.
The adrenal glands are known to have an effect on behavior (Fuller and Thompson, 1978). The inner portions of the adrenals secrete the hormones adrenaline and noradrenaline, while the outer cortex secretes the gender hormones androgens and oestrogens (reproductive hormones), and various corticosteroids (stress hormones). Yeakel and Rhoades (1941) found that Hall's (1938) emotional rats had larger adrenals and thyroids compared to the nonemotional rats. Richter (1952, 1954) found a decrease in the size of the adrenal glands in Norway rats accompanied by domestication. Several line and strain differences have been found since these early reports. Furthermore, Levine (1968) and Levine et al. (1967) showed that brief handling of baby rats reduces the response of the adrenal gland to stress. Denenberg et al. (1967) concluded that early handling may lead to major changes in the neuroendocrine system.
Changing Reactivity versus Taming
Adult wild rats can be tamed and become accustomed to handling by people (Galef, 1970). This is strictly learned behavior. Taming full-grown wild animals to become accustomed to handling by people will not diminish their response to a sudden novel stimulus. This principle was demonstrated by Grandin et al. (1994) in training wild antelope at the Denver Zoo for low- stress blood testing. Nyala are African antelope with a hair-trigger flight response used to escape from predators. During handling in zoos for veterinary treatments, nyala are often highly stressed and sometimes panic and injure themselves. Over a period of 3 months, Grandin et al. (1995) trained nyala to enter a box and stand quietly for blood tests while being fed treats. Each new step in the training had to be done slowly and carefully Ten days were required to habituate the nyala to the sound of the doors on the box being closed.
All the training and petting by zoo keepers did not change the nyala's response to a sudden, novel stimulus. When the nyala saw repairman on the barn roof they suddenly reacted with a powerful fear response and crashed into a fence. They had become accustomed to seeing people standing at the perimeter of the exhibit, but people on the roof was novel and very frightening. Sudden movements such as raising a camera up for a picture also caused the nyala to flee.
Domestic versus Wild
Wild herding species show much stronger fear responses to sudden novelty compared to domestic ruminants such as cattle and sheep. Domestic ruminants have attenuated flight responses due to years of selective breeding (Price, 1984). Wild ruminants will learn to adapt in captivity and associate people with food, but when frightened by some novel stimulus they are more likely to panic and injure themselves (Grandin, 1993b, 1997).This is especially likely if they are prevented from fleeing by a fence or other barrier. Principles for training and handling all herding animals are basically similar. Training procedures used on flighty antelope or placid domestic sheep are the same. The only difference is the amount of time required. Grandin (1989c) demonstrated this by training placid Suffolk sheep to voluntarily enter a tilting restraining device in one afternoon, but it took 3 months to train the nyala.
In summary, experience can affect behavior in two basic ways: by conventional learning or by changing nervous system reactivity Most importantly, environmental conditions (enriched versus barren) have the greatest effect on the nervous systems of young animals.
NEOTENY
Neoteny is the retention of the juvenile features in an adult animal. Genetic factors influence the degree of neoteny in individuals. Neoteny is manifested both behaviorally and physically In the forward to "The Wild Canids" (Fox, 1975), Conrad Lorenz adds a few of his observations on neoteny and the problems of domestication:
The problems of domestication have been an obsession with me for many years. On the one hand I am convinced that man owes the life-long persistence of his constitutive curiosity and explorative playfulness to a partial neoteny which is indubitably a consequence of domestication In a curiously analogous manner does the domestic dog owe its permanent attachment to its master to a behavioral neoteny that prevents it from ever wanting to be a pack leader On the other hand, domestication is apt to cause an equally alarming disintegration of valuable behavioral traits and an equally alarming exaggeration of less desirable ones.
Infantile characteristics in domestic animals are discussed by Price (1984), Lambooij and van Putten (1993), Coppinger and Coppinger (1993), Coppinger and Scheider (1993), and Coppinger et al. (1987). The shortened muzzle in dogs and pigs is an example. Domestic animals have been selected for a juvenile head shape, shortened muzzles, and other features (Coppinger and Smith, 1983). Furthermore, retaining juvenile traits makes animals more tractable and easy to handle. The physical changes are also related to changes in behavior.
Genetic studies point to the wolf as the ancestor of domestic dogs (Isaac, 1970). During domestication, domestic dogs have retained many of the infant wolf behaviors. For example, wolf pups bark and yap a lot but adult wolves rarely bark; domestic dogs bark a lot (Fox, 1975; Scott and Fuller, 1965). Wolves have hard-wired instinctive behavior patterns that determine dominance or submission in social relationships. In domestic dogs, the ancestral social behavior patterns of the wolf are fragmented and incomplete. Frank and Frank (1982) observed that the rigid social behavior of the wolf has disintegrated into "an assortment of independent behavioral fragments." Malamutes raised with wolf pups fail to read the social behavior signals of the wolf pups. Further comparisons found that the physical development of motor skills is slower in the malamute. Goodwin et al. (1997) studied 10 different dog breeds which ranged from German shepherds and Siberian huskies to bulldogs, cocker spaniels, and terriers. They found that the breeds which retained the greatest repertoire of wolf-like social behaviors were the breeds that physically resembled wolves, such as German shepherds and huskies. Barnett et al. (1979) and Price (1985) both conclude that experience can also cause an animal to retain juvenile traits. Gould (1977) also considered the effects of neoteny and stated that neoteny is determined by changes in a few genes that determine the timing of different developmental stages.
OVERSELECTION FOR SPECIFIC TRAITS
Countless examples of serious problems caused by continuous selection for a single trait can be found in the medical literature (Steinberg et al., 1994; Dykman et al., 1969). People with experience in animal husbandry know that overselection for single traits can ruin animals. Good dog breeders know this. Sometimes traits that appear to be unrelated are in fact linked. Wright (1922, 1978) demonstrated this clearly by continuous selection for hair color and hair patterns in inbred strains of guinea pigs. Depressed reproduction resulted in all the strains. Furthermore, differences in temperament, body conformation, and the size and shape of internal organs were found. Belyaev (1979) further showed that continuous selection for a calm temperament in foxes resulted in negative effects on maternal behavior and neurological problems. The fox experiments also found graded changes in many traits over several years of continuous selection for tame behavior. Physiological and behavioral problems increased with each successive generation. In fact, some of the tamest foxes developed abnormal maternal behavior and cannibalized their pups. Belyaev et al. (1981) called this "destabilizing selection," in contrast to "stabilizing selection" found in nature (Dobzhansky 1970; Gould, 1977).
There are also countless examples in the veterinary medical literature of abnormal bone structure and other physiological defects caused by overselecting for appearance traits in dog breeds (Ott, 1996). The abnormalities range from bulldogs with breathing problems to German shepherds with hip problems. Scott and Fuller (1965) reported the negative effects of continuous selection for a certain head shape in cocker spaniels:
In our experiments we began with what were considered good breeding stocks, with a fair number of champions in their ancestry. When we bred these animals to their close relatives for even one or two generations, we uncovered serious defects in every breed. . .Cocker spaniels are selected for a broad forehead with prominent eyes and a pronounced "stop," or angle, between the nose and forehead. When we examined the brains of some of these animals during autopsy, we found that they showed a mild degree of hydroencephaly; that is, in selecting for skull shape, the breeders accidentally selected for a brain defect in some individuals. Besides all this, in most of our strains only about 50 percent of the females were capable of rearing normal, healthy litters, even under nearly ideal conditions of care.
Overselection in Livestock
Single-minded selection for production traits such as rapid gain and leanness resulted in pigs and cattle with more excitable temperaments (Grandin, 1994). Compared to the older genetic lines with more hack fat, observations by the first author on thousands of pigs indicate that lean hybrids are more excitable and difficult to drive through races. Lean hybrid pigs also have a greater startle response. Separating a single animal from the group is more difficult. Recent research conducted in our laboratory has shown that cattle with an excitable temperament have lower weight gains and more meat quality problems (Voisinet et al., 1997a,b). This research illustrates that selection away from a very excitable temperament would be beneficial. However, overselection for an excessively calm temperament could possibly result in some unknown detrimental trait.
Links between Different Traits
Casual observations by the first author also indicate that the most excitable, flighty pigs and cattle have a long, slender body with fine bones. Some of the lean hybrid pigs have weak legs and a few of the normally brown-eyed pigs now have blue eyes. Blue eyes are often associated with neurological problems (Bergsma and Brown, 1971; Schaible, 1963). Furthermore, pigs and cattle with large, bulging muscles often have a calmer temperament than lean animals with less muscle definition. However, animals with the muscle hypertrophy trait (double muscling) have a more excitable temperament (Holmes et al., 1972). Double muscling is extreme abnormal muscling and it might have the opposite effect on temperament compared to normal muscling.
Another example of apparently unrelated traits being linked is deafness in dogs of the pointer breed selected for nervousness (Kllen et al., 1987, 1988). There appears to be a relationship between thermoregulation and aggressiveness. Wild mice selected for aggressiveness used larger amounts of cotton to build their nests than mice selected for low aggression (Sinyter et al., 1995). This effect occurred in both laboratory and wild Strains of mice.
Researchers using high-tech "knockout" gene procedures have been frustrated by the complexity of genetic interactions. In this procedure, genes are knocked out in a gene-targeting procedure whereby a gene is prevented from performing its normal function. The knockout experiments have shown that blocking different genes can have unexpected effects on behavior. In one experiment, superaggressive mice were created when genes involved with learning were inactivated (Chen et al., 1994). The mutant mice had little or no fear and fought until they broke their backs. In another experiment the knockout mutants demonstrated normal behavior until they had pups, and failed to care for them (Brown et al., 1996). In still another experiment, Konig et al. (1996) disabled the gene that produces enkephalin (a brain opioid substance) and found unexpected results. Enkephalin is a substance normally involved in pain perception; however, the mice that were deficient in this substance were very nervous and anxious. They ran frantically around their cages in response to noise. The bottom line conclusion from several different knockout experiments is that changing one gene has unexpected effects on other systems. Traits are linked, and it may be impossible to completely isolate single gene effects. Researchers warn that one must be careful not to jump to a conclusion that they have found an '~aggression gene" or a "maternal gene" or an "anxiety gene." To use an engineering analogy, one would not conclude that they had found the "picture center" in a television set after they cut one circuit inside the set that ruined the picture. Gerlai (1996) and Crawley (1996) also warn that knocking out the same gene in two different species may have different effects on behavior. This is due to the complex interactions between many different genes.
Twenty years ago behavioral geneticists concluded that the inheritance of behavior is complex. Fuller and Thompson (1978) concluded, "It has been found repeatedly that no one genetic mechanism accounts exclusively for a particular kind of behavtor.
Random Factors
Behavioral geneticists have discovered that it is impossible to completely control variation in some traits. Gartner (1990) found that breeding genetically similar inbred lines of rats failed to stop weight fluctuations. Even under highly standardized laboratory conditions, body weights continued to fiuctuate between animals. Pig breeders have also observed that commercially bred hybrid lines of pigs do not gain weight at the same rate. Random unknown factors affect variability even in genetically identical animals. Factors in utero may be one cause; the other causes are unknown. Darrel Tatum and his students at Colorado State University found both body conformation and meat quality variation in cattle which were 50% English (Bos taurus) and 50% Brabman (Bos indicus). Some animals had more Brahman characteristics, with larger humps and longer ears than others; the body conformation of many of the animals was not half English and half Brahmatn. The characteristics of the meat varied as well; animals that looked more Brahman had tougher meat. The animals had about 10% variation from the body shape and meat characteristics of Brahman half-bloods.
Gartner (1990) concluded that up to 90% of the cause of random variability cannot be explained by differences in the animals' physical environment. In both mice and cattle, random factors affected body weights. Gartner (1990) believes that the random factors may have their influence either before or shortly after fertilization.
The interactions between environmental and genetic factors are complex. Both an animals' genetic makeup and its environment determine how it will behave. In subsequent chapters in this book the interactions of genetics and environment will be discussed in greater detail. Genetics has profound effects on an animal's behavior.
CONCLUSIONS
There is a complex interaction between genetic and environmental factors which determines how an animal will behave. The animal's temperament is influenced by both genetics and learning. Another principle is that changes in one trait, such as temperament, can have unexpected effects on other apparently unrelated traits. Overselection for a single trait may result in undesirable changes in other behavioral and physical traits.
REFERENCES
Adler, A. (1996). How songbirds get their tunes. Sci. News 149, 280-281.
Balaban, E. (1997). Changes in multiple brain regions underlie species differences in complex, congenital behavior. Proc. Natl. Acad. Sci. USA 94, 2001-2006.
Barnett, S. A., Dickson, R. G., and Hocking, W. E. (1979). Genotype and environment in the social interactions of wild and domestic "Norway" rats. Aggressive Behav. 5, 105-119.
Belyaev, D. K. (1979). Destabilizing selection as a factor in domestication. J. Hered. 70, 301-308.
Belyaev, D. K., Ruvinksy, A. 0., and Trut, L. N. (1981). Inherited activation-inactivation of the star gene in foxes. J. Hered. 72, 267-274.
Bergsma, D. R., and Brown, K. S. (1971). White fur, blue eyes, and deafness in the domestic cat. J. Hered. 62, 171-185.
Blanchard, D. C., and Blanchard, R. J., (1972). Innate and conditioned reactions to threat in rats with amygdaloid lesions. J. Comp. Physiol. Psychol. 81, 281-290.
Blizard, D. A. (1971). Autonomic reactivity in the rat: Effects of genetic selection for emotionality. J. Comp. Physiol. Psychol. 76, 282-289.
Boessneck,J. (1985). [Domestication and its sequelae] Die Domestikation und irhe Folgen. Tieraerztl. Prax. 13(4), 479-497 (in Gennan).
Boice, R. (1977). Burrows of wild and albino rats; Effects of domestication, outdoor raising, age, experience and maternal state. J. Comp. Physiol. Psych. 91, 649-661.
Boissy, A. (1995). Fear and fearfulness in animals. Q. Rev. Biol. 70(2), 165-191.
Boissy, A., and Bouissou, M.-F (1995). Assessment of individual differences in behavioral reactions of heifers exposed to various fear-eliciting situations. App. Anim. Behav. Sci. 46, 17-31.
Brelands, K., and Brelands, M. (1951). A field of applied animal psychology Am. Psychol. 6, 202-204.
Brelands, K., and Brelands, M. (1961). The misbehavior of organisms. Am. Psychol. 16, 681-684.
Broadhurst, P. L. (1960). Analysis of maternal effects in the inheritance of behavior. Anim. Behav. 9, 129-141.
Broadhurst, P. L. (1975). The Maudsley reactive and non-reactive strains of rats. A survey. Behav. Genet. 5, 299-319.
Brown, J. R., Ye, H., Bronson, R. T., Dikkes, P, and Greenberg, M. E. (1996). A defect in nurturing in mice lacking the immediate early gene fosB. Cell 86, 297-309.
Canty, N., and Gould, J. (1995). The Hawk/Goose experiment; sources of variability. Anim. Behav. 50, 1091-1095.
Chen, C., Rainnie, D. G., Greene, R. W., and Tonegawa, S. (1994). Abnormal fear response and aggressive behavior in mutant mice deficient for a-calcium-calmodin kinease II. Science 266, 291-294.
Cooper, R. M., and Zubek,J. P (1958). Effects of enriched and restricted early environments on learning ability of bright and dull rats. Can. J. Psychol. 12, 159-164.
Coppinger, L., and Coppinger, R. (1993). Dogs for herding livestock. In "Livestock Handling and Transport" (T. Grandin, ed.), pp. 179-196. CAB International, Wallingford, UK.
Coppinger, R., and Schneider, R. (1993). Evolution of working dog behavior. In "The Domestic Dog: Its Evolution, Behavior and Interactions with People" (J. Serpell, ed.). Cambridge University Press, Cambridge, UK.
Coppinger, R., Glendinning, J., Torop, E., Matthay C., Sutherland, M., and Smith, C. (1987). Degree of behavioral neoteny differentiates canid polymorphy. Ethology 75, 85-108.
Coppinger, R. P, and Smith, C. K. (1983). The domestication of evolution. Environ. Conserv. 10, 283-292.
Craw1ey, J. N., (1996). Unusual behavioral phenotypes of inbred mouse strains. Trends Neurosci. 19(5), 181-182.
Dantzer, R., and Mormede, P (1983). Stress in farm animals. A need for re-evaluation. J. Anim. Sci. 57, 618.
Darwin, C. R. (1859). "On the Origin of Species." Oxford University Press (published in 1958 by Mentor, New York).
Darwin, C. R. (1868). "The Variation of Plants and Animals under Domestication," Vol.1 and 2. John Murray, London.
Darwin, C. (1871). "The Descent of Man and Selection in Relation to gender." Modern Library, New York.
Davis, M. (1992). The role of the amygdala in fear and anxiety. Annu. Rev. Neurosci. 15, 353-375.
Dawkins, M. S. (1993). "Through our Eyes Only: The Search for Animal Consciousness." Freeman, New York.
Denenberg, V. H., and Whimbey, A. E. (1968). Experimental programming of life histories: Towards an experimental science of individual differences. Dev Psychobiol. 1(1), 55-59.
Denenberg, V H., Brumaghim,J. T., Haltmeyer, G. C., and Zarrow M. X. (1967). Increased adrenocortical activity in the neonatal rat following handling. Endocrinology (Baltimore) 81, 1047-1052.
Dobzhansky, T. (1970). "Genetics of the Evolutionary Process." Columbia University Press, New York.
Dykman, R. A., Murphee, 0. D., and Peters J. E. (1969). Like begets like: Behavior tests, classical autonomic and motor conditioning in two strains of pointer dogs. Ann. N. Y Acad. Sci. 159, 976-1007.
Eibi-Eibesfeldt, I., and Kramer, S. (1958). Ethology, the comparative study of animal behavior. Q. Rev Biol. 33, 181-211.
Einarsen, A. S. (1948). "The Pronghorn Antelope." Wildlife Management Institute, Washington, DC.
Elgar, M. A. (1989). Predators vigilance and group size in mammals and birds. A critical review of the empirical evidence. Biol. Rev. Cambridge Philos. Soc. 64, 13-33.
Eysenck, H.J., and Broadhurst, P. L. (1964). Experiments with animals: Introduction. In "Experiments in Motivation" (H.J. Eysenck, ed.), pp. 285-291. Macmillan, New York.
Fentress,J. C. (1973). Development of grooming in mice with amputated forelimbs. Science 179, 204-205.
Flint,J., Corley, R., DeFries,J. C., Fulker, D. W., Gray,J. A., Miller, S., and Collins, A. C. (1995). A simple genetic basis for a complex physiological trait in laboratory mice. Science 269, 1432-1435.
Fordyce, G., Dodt, R. M., and Wythes,J. R. (1988). Cattle temperaments in extensive herds in northern Queensland. Ausi. J. Exp. Agric. 28, 683-687.
Fox, M. W, ed. (1975). "The Wild Canids: Their Systematics, Behavioral Ecology and Evolution." Van Nostrand-Reinhold, New York.
Frank, H., and Frank, M. G. (1982). On the effects of domestication on canine social development and behavior. Appl. Anim. Ethol. 8, 507-525.
Fujita, 0., Annen, Y., and Kitaoka, A. (1994). Tsukuba high and low emotional strains of rats (Rattus norvegicus): An overview. Behav. Genet. 24, 389-415.
Fuller,J. L., and Thompson, W. R. (1978). "Foundations of Behavior Genetics:' Mosby, St. Louis, MO.
Galef, B. G., Jr., (1970). Aggression and timidity: Responses to novelty in feral Norway rats. J. Comp. Physiol. Psychol. 70, 370-381.
Gartner, K. (1990). A third component causing random variability besides environment and genotype. A reason for the limited success of a thirty year long effort to standardize laboratory animals? Lab. Anim. 24, 71-77.
Gerlai, R. (1996). Gene-targeting studies of mammalian behavior: Is it the mutation or the background genotype? Trends Nesrosci. 19(5), 177-181.
Gloor, P., Oliver, A., and Quesney, L. F. (1981). The role of the amygdala in the expression of psychic phenomenon in temporal lobe seizures. In "The Amygdaloid Complex" (Y. Ben-Ari, ed.), pp. 489-507. Elsevier/North-Holland, New York.
Goodwin, D., Bradshaw,J. W. S., and Wickens, S. M. (1997). Paedomorphosis affects visual signals of domestic dogs. Anim. Behav. 53, 297-304.
Gould, S.J. (1977). "Ontogeny and Phylogeny." Harvard University Press (Belknap Press), Cambridge, MA and London.
Grandin, T. (1989a). Effects of rearing environment and environmental enrichment on behavior and neural development in young pigs. Ph.D. Dissertation, University of Illinois, Urbana.
Grandin, T. (1989b). Environmental causes of abnormal behavior. Large Anim. Vet., June 13-16, 4(3)13-16.
Grandin, T. (1989c). Voluntary acceptance of restraint by sheep. Appl. Anim. Behav. Sci. 23, 257-261.
Grandin, T. (1993a). Behavioral agitation during handling of cattle is persistent over time. Appl. Anim. Behav. Sci. 36, 1-9.
Grandin, T. (1993b). Behavioral principles of cattle handling under extensive conditions. In "Livestock Handling and Transport" (T. Grandin, ed.), pp. 43-57. CAB International, Wallingford, UK.
Grandin, T. (1994). Solving livestock handling problems. Vet. Med. 89,989-998.
Grandin, T. (1995). "Thinking in Pictures." Doubleday, New York.
Grandin, T. (1997). Assessment of stress during handling and transport. J. Anim. Sci. 75, 249-257.
Grandin T., Rooney, M. B., Phillips, M. Cambre, R. C., Irlbeck, N. A., and Graffam, W. (1995). Conditioning of nyala (Tragelaphus angasi) to blood sampling in a crate with positive reinforcement. Zoo Biol. 14, 261-273.
Greenough, W. T., and Juraska, J. M. (1979). Experience induced changes in fine brain structure: Their behavioral implications. In "Development and Evolution of Brain Size: Behavioral Implications" (M. E. Hahn, C. Jensen, and B. C. Dudek, eds. . pp. 295-320. Academic Press. New York.
Griffin, D. (1994). "Aniinal Minds:" University of Chicago Press, Chicago.
Hall, C. S. (1934). Emotional behavior in the rat. I. Defecation and urination as measures of individual differences in emotionality. J. Comp. Psychol. 18, 385-403.
Hall, C. S. (1938). The inheritance of emotionality. Sigma Xi Q. 26, 17-27.
Heinroth, 0. (19l8). Reflektorische Bewegungen bei Voegeln. J. Ornithol. 66, Nos. 1 and 2.
Heinroth, 0. (1938). "Aus dem Leben der Vogel." Berlin.
Hemswworth, P. H., Barnett, J. L., Treacy, D., and Madgwick, P (1990). The heritability of the trait fear of humans and the association between this trait and subsequent reproductive performance of gilts. Appl. Anim. Behav. Sci. 25, 85-95.
Henderson, N. D. (1968). The confounding effects of genetic variables in early experience research: Can we ignore them? Dev. Psychobiol. 1, 146-152.
Hennessy, M. G., and Levine, S. (1978). Sensitive pituitary adrenal responsiveness to varying intensities of psychological stimulation. Physiol. Behav. 21, 295-297.
Herrick, C. J. (1910). The evolution of intelligence and its organs. Science. 31, 7-18.
Herrick, F H. (1908). The relation of instinct to intelligence in birds. Science. 27, 847-850.
Hirsh, J. (1963). Behavior genetics and individuality understood. Science. 142, 1436-1442.
Hirsh, J., Lindley, R. H., and Tolman, E. C. (1955). An experimental test of an alleged sign stimulus. J. Comp. Physiol. Psychol. 48, 278-280.
Holmes, J. H. G., Itobinson, D. W, and Ashmore, C. R. (1972). Blood lactic acid and behavioral cattle with hereditary muscular hypertrophy J. Anim. Sci. 55,1011-1014.
Hubel, D. H., and Wiesel, T. N. (1970). J. Physiol. (London) 206, 419.
Huck U. W., and Price, E. 0. (1975). Differential effects of environmental enrichment on the open-field behavior of wild and domestic Norway rats. J. Comp. Physiol. Psychol. 89,892-898.
Huxley, T. H. (1874). On the hypothesis that animals are automata, and its history. In "Collected Essays, Vol.1. Methods and Results: Essays," p. 218. (Published in 1901 by Macmillan, London.)
Isaac, E. (1970). "Geography of Domestication." Prentice-Hall, Englewood Cliffs, N.J.
Jones, R. B. (1984). Experimental novelty and tonic immobility in chickens (Gallus domesticus). Behav. Processes 9, 255-260.
Kagan,J., Reznick,J. S., and Snidman, N. (1988). Biological bases of childhood shyness. Science. 240, 167-171.
Keeler, C., Mellinger, T., Fromm, E., and Wade, L. (1970). Melanin. Adrenalin and the legacy of fear. J. Hered. 61, 81-88.
Kemble E. D., Blanchard, D. C., Blanchard, R.J., and Takushi, R. (1984). Taming in wild rats following medial amygdaloid lesions. Physiol. Behav. 32, 131-134.
Klien, E., Steinberg, S. A., Weiss, S. R. B., Matthews, D. M., and Uhde, T. W. (1988). The relationship between genetic deafness and fear-related behaviors in nervous pointer dogs. Physiol. Behav. 43, 307-312.
Konig, M., Zimmer, A. M., Steiner, H., Holmes, P. V., Crawley J. N., Brownstein, M.J., and Zimmer, A. (1996). Pain responses, anxiety and aggression in mice deficient in preproenkephalin. Nature (Landau) 383, 535-538.
Krushinski, L. V (1960). In "Animal Behavior. Its Normal and Abnormal Development" (J. Wortis, ed.). International Behavioural Sciences Service, Consultants Bureau, New York. (Original Russian version published by Moscow University Press).
Kruuk, H. (1972). "The Spotted Hyena:" University of Chicago Press, Chicago.
Lambooij, E., and van Putten, G. (1993). Transport of pigs. In "Livestock Handling and Transport" (T. Grandin, ed.). CAB International, Wallingford, UK.
LeDoux, J. E. (1992). Brain mechanisms of emotion and emotional learning. Curr. Opin. Neurobiol. 2(2), 191-197.
LeDoux, J. E., Iwata, J., Ciccheti, P., and Reis, D.J. (1988). Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J. Neurosci. 8, 2517-2529.
LeDoux, J. E., Ciccheti, P., Xagoraris, A., and Romanski, L. M. (1990). The lateral amygdaloid nucleus; sensory interface of the amygdala in fear conditioning. J. Neurosci. 10, 1062-1069.
Lesch, K. P, Bengel, D., Heils, A., Sabol, S. Z., Greenburg, B. D., Petri, S., Benjamin, J., Muller, C. R., Hamer, D. H., and Murphy, D. L. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene-regulatory region. Science 274, 1527-1551.
Levine, S. (1968). Influence of infantile stimulation on the response to stress during preweaning development. Dev. Psychobiol. 1(1), 67-70.
Levine, S., Haltmeyer, G. C., Karas, G. G., and Denenburg, V. H. (1967). Physiological and behavioral effects of infantile stimulation. Physiol. Behav. 2, 55-59.
Lorenz, K. Z. (1939). Vergleichende Verhaltensforschung. Zool. Anz., Suppl. 12, 69-109.
Lorenz, K. Z. (1965). "Evolution and Modification of Behavior." University of Chicago Press, Chicago.
Lorenz, K. Z. (1981). "The Foundations of Ethology." Springer-Verlag. New York.
Mahut, H. (1958). Breed differences in the dog's emotional behavior. Can. J. Psychol. 12(1), 35-44.
Manuck, S. B., and Schaefer, D. C. (1978). Stability of individual differences in cardiovascular reactivity. Physiol. Behav. 21, 675-678.
Matheson, B. K., Branch, B.J., and Taylor, A. N. (1971). Effects of amygdaloid stimulation on pituitary-adrenal activity in conscious cats. Brain Res. 32, 151-167.
Mayr, E. (1974). Behavioral programs and revolutionary strategies. Am. Sci. 62, 650-659.
Melton, D. A. (1991). Pattern formation during animal development. Science 252, 234-241.
Melzack, R., and Burns, S. K. (1965). Neurophysiological effects of early sensory restriction. Exp. Neurol. 13, 163-175.
Metfessel, M. (1935). Roller canary song produced without learning from external source. Science 81,470.
Moberg, G. P, and Wood, V. A. (1982). Effects of differential rearing on the behavioral and adrenocortical response of lambs to a novel environment. Appl. Anim. Ethol. 8, 269-279.
Mueller, H. C., and Parker, P. (1980). Cardiac responses of domestic chickens to hawk and goose models. Behav. Processes 7, 255-258.
Mundinger, P. C. (1995). Behavior genetic analysis of canary song; interstrain differences in sensory learning and epigenetic rules. Anim. Behav. 50, 1491-1511.
Murphy, L. B. (1977). Responses of domestic fowl to novel food and objects. Appl. Anim. Ethol. 3, 335-349.
Murphey, R. M., Moura Duarte, F. A., Coelho Novaes, W., and Torres Penedo, M. C. (1980a). Age group differences in bovine investigatory behavior. Dev Psychobiol. 14(2), 117-125.
Murphey, R. M., Moura Duarte, F. A., and Torres Penedo, M. C. (1980b). Approachability of bovine cattle in pastures: Breed comparisons and a breed X treatment analysis. Behav. Genet. 10, 171-181.
Murphey R. M., Moura Duarte, F. A., and Torres Penedo, M. C. (1981). Responses of cattle to humans in open spaces: Breed comparisons and approach-avoidance relationships. Behav. Genet. 11(1), 37-48.
Nottebohm, F. (1970). Ontogeny of bird song. Science 167, 950-956.
Nottebohm, F. (1977). Asymmetries in neural control of vocalization in the canary In "Lateralization of the Nervous System" (S. Harnard, ed.). Academic Press, New York and London.
Nottebohm, F. (1979). Origins and mechanisms in the establishment of cerebral dominance. In "Handbook of Behavioral Neurobiology" (M. Gazzaniza, ed.). Plenum, New York.
Nottebohm, F., Stokes, T. M., and Leonard, C. M. (1976). Central control of song in the canary (Serinus canaria). J. Comp. Neurol. 165, 457-486.
Nowicki, S., and Marler, P (1988). How do birds sing? Music Percept. 5, 391-421.
Ott, R. S. (1996). Animal selection and breeding techniques that create diseased populations and compromise welfare. J. Am. Vet. Med. 208, 1969-1974.
Parsons, P. A. (1988). Behavior, stress and variability. Behav. Genet. 18(3), 293-308.
Plomin, R., and Daniels, D. (1987). Why are children in the same family so different from one another? Behav. Brain Sci. 10, 1-60.
Popova, N. K., Voitenko, N. N., and Trut, F. N. (1975). Changes in serotonin and 5-hydroindoleacetic acid content in the brain of silver foxes under selection for behavior. Proc. Acad. Sci. USSR 233, 1498-1500 (in Russian).
Poulsen, H. (1959). Song learning in the domestic canary. Z. Tierpsychol. 16, 173-178.
Price, E. 0. (1984). Behavioral aspects of animal domestication. Q. Rev. Biol. 59, 1-32.
Price, E. 0., and Loomis, S. (1973). Maternal influence on the response of wild and domestic Norway rats to a novel environment. Dev. Psychobiol. 6, 203-208.
Reese, W. G., Newton,J. E. 0., and Angel C. (1983) A canine model of psychopathology In "Psychosomatic Medicine" (A. J. Krakowski, and C. P. Kimball eds.) pp. 25-31. Plenum, New York.
Richter, C. P. (1952). Domestication of the Norway rat and its implications for the study of genetics of man. Am.J. Hum. Genet. 4, 273-285.
Richter, C. P. (1954). The effects of domestication and selection on the behavior of the Norway rat. J. Nat. Cancer Inst. (U.S.) 15, 727-738.
Rogan, M. T., and LeDoux,J. E. (1996). Emotion: Systems, cells and synaptic plasticity. Cell (Cambridge, Moss.) 83, 369-475.
Royce, J. R., Carran, A., and Howarth, E. (1970), Factor analysis of emotionality in ten strains of inbred mice. Multidisciplinary Res. 5, 19-48.
Schaible, R. (1963). Clonal distribution of melanocytes in piebald spotting and variegated mice. J. Explor. Zool. 172, 181-200.
Schroeder, C. (1914). Thinking animals. Nature (London) 94, 426-427.
Schultz, D. (1965). "Sensory Restriction." Academic Press, New York.
Scott, J. P, and Fuller,J. L. (1965). "Genetics and the Social Behavior of the Dog." University of Chicago Press, Chicago.
Setckleiv J.. Skaug, O. E., and Kaada, B. R. (1961). Increase of plasma 17-hydroxy-corticosteroids by cerebral cortical and amagdaloid stimulation in the cat. J. Endocrinol. 22, 119-126.
Simons, D., and Land, P. (1987). Early experience of tactile stimulation influences organization of somatic sensory cortex. Nature (London) 326, 694-697.
Skinner, B. F. (1958). "Behavior of Organisms." Appleton-Century-Crofts, New York.
Skinner, M. P. (1922). The pronghorn. J. Mammal. 3, 82-106.
Sluyter, F., Bult, A., Lynch, C. B., VanOortmerssen, G. A., and Kookhaus,J. S. (1995). A comparison between house mouse lines selected for attack latencies or nest building: Evidence for a genetic basis of alternative behavioral strategies. J. Comp. Physiol. Psychol. 91, 649-661.
Steinberg, S. A., Klien, E., Killens, R. L., and Udhe, T. W. (1994). Inherited deafness among nervous pointer dogs. J. Hered. 85, 56-59.
Stephens, D. B., and Toner, J. N. (1975). Husbandry influences on some physiological parameters of emotional responses in calves. Appl. Anim. Ethol. 1, 233-243.
Tinbergen, N. (1948). Social releasers and the experimental method required for their study. Wilson Bull. 60, 6-52.
Tinbergen, N. (1951). "The Study of Instinct." Oxford University Press, New York (reprinted 1961).
Tulloh, N. M. (1961). Behavior ofcattle in yards II. A study of temperament. Anim. Behav. 9, 25-30.
Vita, C., Savolainen, P., Maldonado, J. E., Amorim, I. R., Rice,J. E., Honeycutt, R. L., Crandall, K. A., Lundeberg, J., and Wayne, R. K. (1997). Multiple and ancient origins of the domestic dog. Science 276, 1687-1689.
Voisinet, B. D., Grandin, T., Tatum, J. D., O'Conner, S. F, and Struthers, J. (1997). Feedlot cattle with calm temperaments have higher average daily gains than cattle with excitable temperaments. J. Anim. Sci. 75, 892-896.
Voisinet, B. D., Grandin, T., O'Connor, S. F, Tatum.J. D., and Deesing, M.J. (1997). Bos-indicus cross feedlot cattle with excitable temperaments have tougher meat and a higher incidence of borderline dark cutters. Meat Sci. (In press.)
Walsh, R. N.. and Cummins, R. A. (1975). Mechanisms mediating the production of environmentally induced brain changes. Psychol. Bull. 82, 986-1000.
Watson, J. B., (1930). "Behaviorism." W. W. Norton, New York.
Whitman, C. 0. (1898). "Animal Behavior," Biol. Lec. Marine Biological Laboratory, Woods Hole, MA.
Widowski, T. M., and Curtis, S. E. (1989). Behavioral responses of periparturient sows and juvenile pigs to prostaglandin F2a. J. Anim. Sci. 67, 3266-3276.
Wood-Gush, D. G. M., Beilharz, R. G. (1983). The enrichment of a bare environment for animals in confined conditions. Appl. Anim. Ethol. 10, 209.
Wood-Gush, D. G. M., and Vestergaard, K. (1991). The seeking of novelty and its relation to play. Anim. Behav. 42, 599-606.
Wright, S. (1922). The effects of inbreeding and crossbreeding on guinea pigs. U.S. Dep. Agric. Bull. 1090.
Wright, S. (1978). The relation of livestock breeding to theories of evolution. J. Anim. Sci. 46(5), 1192-1200.
Yeakel, E. H., and Rhoades, R. P. (1941). A comparison of the body and endocrine gland (adrenal, thyroid and pituitary) weights of emotional and nonemotional rats. Endocrinology (Baltimore). 28, 357-340.
Yerkes, R. M. (1905).J. Comp. Neurol. Psychol. 15, 137.
Zeuner, F. E. (1963). "A History of Domesticated Animals." Harper & Roy, New York.
Langganan:
Postingan (Atom)